
 
Abstract—The purpose of the paper is to evaluate and compare 

the performance of various transport protocols over some 
current tactical radios using different topologies The four 
selected transport protocols were TCP, SCTP, UDT, and 
Mockets. The comparison was done with three different tactically 
relevant radios – the Harris PRC-117G, the TrellisWare TW-400, 
and the Persistent Systems WaveRelay MPU4. The results show a 
surprising amount of variability in performance, and indicate 
that the Mockets transport protocol provided the best overall 
performance on two of the three radios used for evaluation. 

I. INTRODUCTION 
Transport protocols sit between the network layer and the 

middleware / application layers and are typically responsible 
for end-to-end delivery of data with various types and qualities 
of service. The most popular transport protocols are TCP and 
UDP, with TCP being used by the majority of applications on 
the Internet. TCP provides a simple stream-based protocol 
with reliable and in-order delivery of data. However, TCP was 
designed for the commercial Internet and fairly reliable wired 
and wireless networks. As a result, TCP typically provides 
poor performance when operating over tactical networks that 
are typically wireless, bandwidth constrained, unreliable, 
variable latency, and prone to temporary disconnection. 

The primary purpose of this paper is to evaluate and 
compare the performance of various transport protocols over 
some current tactical radios in a suburban outdoor 
environment. This is a significant, ongoing task and in order to 
constrain the complexity of the problem, several simplifying 
assumptions have been made in terms of the choice of 
protocols, the selection of radio platforms, the size of the 
network, and the deployment topologies. Even with these 
assumptions, the results are sufficiently interesting and worth 
reporting – hence this paper. The evaluation is by no means 
complete, as new aspects are still being incorporated. 
However, those will be reported in future publications and 
reports. 

It is important to note that this paper is not comparing the 
performance of different radios, and we discourage the reader 
from using the results presented as a means to compare radio 
performance for two reasons. First, the radios were not 
configured (in terms of frequencies and bandwidth) to provide 
the same performance. Second, we do not feel that the testing 
was sufficiently rigorous for that purpose. Instead, our 
objective is to compare the performance of different transport 
protocols on each of the selected radio platforms. 

For the purpose of this paper, four transport protocols were 
selected – TCP (the de facto baseline), SCTP (Stream Control 
Transmission Protocol), UDT (UDP-based Data Transfer 
Protocol), and Mockets. An overview of these four protocols 
is provided in section 2. Several other protocols were 
considered for evaluation, including SCPS-TP (Space 
Communications Protocol Specifications – Transport 
Protocol) [ref], DCCP (Datagram Congestion Control 
Protocol) [ref], and QUIC (Quick UDP Internet Connections) 
[ref], but were ultimately not included for a variety of reasons 
– primary to constrain the scope of the paper, but for other 
reasons as well. For example, the home page for SCPS 
(www.scps.org) is not even online anymore. An internet 
archive was used to retrieve a version of the code for an 
implementation from 2009, and could possibly be 
incorporated into a future evaluation. Also QUIC was not 
included because it was difficult to extract an easily reusable 
implementation out of the overall Google™ Chromium 
codebase. Again, this could possibly be incorporated into a 
future evaluation. 

Likewise, for the purpose of this paper, three tactical radios 
were selected – the Harris PRC-117G with the ANW2 
waveform, the TrellisWare TW-400 CUB, and the Persistent 
Systems WaveRelay MPU4. These radios were selected 
primarily because they are commonly utilized for tactical edge 
networks. Other radio platforms that were not selected for this 
initial evaluation but would probably be considered in the 
future include the Harris PRC-117G with SRW (Soldier Radio 
Waveform), the Harris PRC-152A platform, and the General 
Dynamic PRC-154A Rifleman radio with SRW. Details 
regarding the configuration of the radios are described in 
section 3. 

In order to establish a baseline performance measure prior 
to more complex scenarios and topologies, only three radios 
were deployed for all of the experiments conducted. One radio 
was connected to a server node, one radio to a client node, and 
one intermediate radio acted as a communications relay. 
Furthermore, all of the tests were done in a static scenario – 
without any mobility during the test. Mobility will be 
incorporated into future evaluations. The radios were deployed 
outdoors in a suburban office park like environment. 
Frequencies were selected so as to not interfere with each 
other but also to not allow common cellular and WiFi signals 
that might be present to interfere with the radios being 
evaluated. Being outdoors, there was random movement of 
automobiles – sometimes between the radio node locations. 
Likewise, there were buildings and trees and minor changes in 
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elevation. While one of the configurations involved a number 
of trees in the path between two of the nodes, the tests were 
conducted at the end of March – when there was no foliage on 
the trees. The environment and the topologies are further 
described in section 4. 

The actual results are presented in section 5, followed by a 
discussion of the results. Section 6 contains some conclusions 
and a description of future work. 

II. OVERVIEW OF SELECTED TRANSPORT PROTOCOLS 

A.  TCP 
The Transmission Control Protocol (TCP) is a transport 

layer protocol of the Internet Protocol Suite, and the de-facto 
standard for the majority of Internet applications and services, 
such as HTTP(S), e-mail, SSH, etc. TCP establishes an end-to-
end connection between two applications running on nodes of 
an IP-based network and provides the abstraction of a reliable, 
ordered stream of bytes flowing between them. Reliability is 
guaranteed thanks to a mechanism based on acknowledgments 
(ACKs) of correctly delivered packets and on the timeout-
driven retransmission of unacknowledged segments. To ensure 
the ordered delivery of data, TCP uses a sequence number to 
identify the first byte of each segment; this allows the receiver 
to also restore the correct transmission sequence in case of 
packet loss. TCP also provides flow control and congestion 
control, to share the bandwidth between multiple connections 
equally and avoid network collapse. TCP was designed for 
wired infrastructure environments, hence it exhibits several 
weaknesses in wireless, low bandwidth, and intermittently 
connected networks. When applications do not require in-
order and reliable data transmission, their only choice consists 
of switching to other transport protocols, like UDP. 

Researchers have invested much effort to improve TCP 
over the course of its existence. This has led to the 
development of a number of alternative congestion-avoidance 
algorithms, which add features like slow-start, fast recovery, 
fast retransmit, and different ways to manage the size of the 
congestion window in response to packet losses or successful 
ACKs. TCP CUBIC [1] is the default algorithm in Linux 
kernels from version 2.6.19 to 3.1 and the one we used in our 
experiments. It builds upon TCP BIC and changes the 
congestion window growth function from a combination of 
linear, logarithmic, and exponential curves to a cubic function, 
hence its name. TCP CUBIC shows more efficient use of 
network resources in high bandwidth-delay product networks 
under a wide range of round-trip times and achieves better 
fairness with competing TCP flows [1]. 

B.  SCTP 
The Stream Control Transmission Protocol (SCTP) [2] is a 

transport layer protocol that relies on IP to provide message-
oriented and connection-oriented end-to-end communications. 
Similarl to TCP, SCTP ensures the reliable, in-sequence 
delivery of messages and comparable algorithms provide flow 
and congestion control. However, SCTP optionally provides 
order-of-arrival message delivery semantics. Unlike TCP, 

SCTP also supports multi-homing and multi-streaming. The 
former allows the protocol to take advantage of multiple IP 
addresses or network interfaces on the same endpoint, a 
feature that can improve connection survivability in case of 
node mobility or link disruption. SCTP currently exploits 
multi-homing for redundancy purposes only, and it does not 
permit increasing the maximum throughput. A “primary” 
address is chosen to receive data, and heartbeats are used to 
monitor the availability of alternate transmission paths and to 
test previously discovered paths. Multi-streaming, instead, 
ensures the concurrent transmission of multiple streams of 
data between connected hosts. This feature is important to 
avoid head-of-line blocking between independent streams. 

Although the Linux Kernel natively supports SCTP since 
version 2.6, we installed the Linux Kernel Stream Control 
Transmission Protocol Tools (LKSCTP Tools), version 1.0.16, 
on the systems we used in our experiments. LKSCTP provides 
a Linux user-space library that we used in the test utility we 
developed to access the SCTP-specific API that is not part of 
the standard sockets interface. 

C. UDT 
UDP-based Data Transfer (UDT) [3] [4] is an application-

level data transport protocol that builds on top of UDP to 
support distributed data intensive applications over wide area 
high-speed networks (WAN). The main design goal of UDT is 
to reach high data transfer throughput over the network, while 
also achieving fairness between multiple UDT flows and 
without starving TCP connections. UDT is connection-
oriented, and provides both stream-oriented and message-
oriented delivery semantics. Additionally, it is possible to 
configure UDT to perform reliable, partially reliable, or 
unreliable message transmissions, as well as sequenced or 
unsequenced delivery. The UDT API is very similar to the 
Berkeley socket API, a choice made to simplify the process of 
switching from TCP or UDP to UDT. UDT supports user-
defined congestion control algorithms and the multiplexing of 
multiple UDT connections over a single UDP flow (that is, all 
messages specify the same destination port number). 
Additionally, applications using UDT can access an internal 
performance monitor to retrieve statistics about open 
connections. Finally, as an application-level library based on 
UDP, it is easy to port UDT-based applications to different 
machines and operating systems. 

To develop the test utility we used during our experiments, 
we installed the libudt-dev version 4.11. libudt-dev is a 
package for Ubuntu Linux systems that provides an 
implementation of version 4 of UDT that can be used for 
application development. 

D.  Mockets 
The Mockets (for Mobile Sockets) [5][6] framework is an 

application-level communications library that is part of the 
IHMC Agile Computing Middleware, and is specifically 
designed to support adaptive applications in MANET 
environments. Figure 1 shows the framework's architecture 
and how it interacts with applications and the network. 



Mockets provides a number of unique features, including 
complete orthogonality between reliability and sequencing in 
the delivery semantics, as well as prioritization, message 
tagging and replacement of enqueued but outdated messages, 
detailed communication statistics, numerous timeout options, 
policy-based bandwidth control, statistics collection, and 
endpoint migration. With Mockets, applications can open 
multiple independent data flows and assign different QoS and 
priority levels to each of them. Also, applications can access 
statistics on the current channel conditions and the state of 
connections. Finally, endpoint migration is extremely useful to 
avoid breaking connectivity in case of vertical or horizontal 
handover, frequently cause by node mobility in mobile ad-hoc 
and heterogeneous networks. 

Like UDT, the Mockets framework is designed as an 
application-level library and so it is not part of the operating 
system kernel or network protocol stack. This allows easy 
porting of Mockets to many environments, and it is currently 
available for Win32, Linux, Android, and MacOSX platforms. 
This design choice was essential to support easy deployment, 
platform independence, and phased utilization. It is possible to 
only have a subset of the applications to use Mockets, while 
the remaining can continue to use TCP and UDP. This 
facilitates adoption and deployment, as applications can 
gradually migrate to Mockets from the sockets API. 

Mockets provides a rich model of interaction between 
applications and the framework, which fosters a feedback-
loop-based programming model. In accordance with it, 
applications can tune the amount of data handed over to 
Mockets and the delivery semantics requested for that data, 
making tradeoffs on delivery latency and bandwidth 
utilization. In turn, Mockets keeps applications up-to-date 
about the current state of the network and the connections, so 
that applications can adapt to it and make more informed 
choices in the future. 

III. TACTICAL RADIO PLATFORMS AND CONFIGURATION 

A.  Harris PRC-117G with ANW2 
The Harris AN/PRC-117G radio is a fielded software 

defined tactical radio. This radio is currently being used in 
tactical environments in various locations around the world. 
Through the software definable waveforms, this radio allows 
for backward compatibility with existing fielded radios as well 
as newer wave forms that are further optimized for the tactical 
environment. The 117G has a wide frequency of operation 
starting from 30MHz and extending into the 2GHz bands. It 
can operate in narrow and wide band modes, and is capable of 
type one encryption. Transmit power for this radio in the 
configuration used can vary from .2 to 5 Watts. The specific 
waveform used for this test is Adaptive Networking Wideband 
Waveform (ANW2C). When configured properly, multiple 
radios will form a Mobile Ad hoc Network (MANET). The 
three radios used were configured using CPA, a tool provided 
by Harris for radio network configuration. For the tests 
described in this paper the network was constrained to three 
radios allowing for a maximum of 2Mbps throughput between 
any two radios, occupying 5MHz of channel bandwidth. The 
details of the specific radio configuration used for this test are 
provided in Table 1. 

B.  TrellisWare TW-400 CUB 
The TrellisWare TW-400 radio is a small footprint radio 

used in many commercial, law enforcement and tactical 
applications. It is based on a software defined radio 
architecture and uses TrellisWare’s Tactical Scalable MANET 
Enhanced (TSM-E) waveform, with AES-256 encryption. It 
can operate in two specific bands 1800/2200 MHz and offers 
different interface adapters for analog video, audio, USB, 
Ethernet and Wi-Fi. As used for this test, each radio was 
configured with an Ethernet interface adapter. The TW-400 is 
capable of up to 8Mbps data rate, occupying 20MHz of 
channel bandwidth. These radios operate as peer to peer 
devices and will autonomously form a MANET. 
Configuration for the radios used in this test was performed 
through a custom configuration application. Specific details of 
the configuration for this test are listed in Table 1. 

C. Persistent Systems WaveRelay MPU4 
Persistent systems WaveRelay Man Portable Unit fourth 

generation (MPU4) is a peer to peer MANET radio being used 
in many commercial, law enforcement and tactical 
applications. This radio provides data rates up to 37Mbps 
using UDP and 27 Mbps using TCP, while occupying 40MHz 
of channel bandwidth. The radio provides AES-CTR-256 
encryption. These radios are manufactured to operate in 
several frequency bands. The radios used for this test were 
operating in the 2.3 to 2.5 GHz bands. Interface dongles are 
available to allow audio, USB and Ethernet. The Ethernet 
dongles were used for the tests covered by this paper. 
Configuration for the radios used in this test was performed 
through a browser interface. Specific details of the 
configuration for this test are listed in Table 1. 

Figure 1: Mockets Architecture 



IV. ENVIRONMENT, TOPOLOGIES, AND EXPERIMENTAL 
SCENARIO 

A.  Environment 
The Army Research Laboratory (ARL) Adelphi Laboratory 

Center (ALC) campus was chosen for this experiment. The 
ARL-ALC campus consists of multiple buildings of varying 
construction, interconnected by paved roadways and 
pathways. This campus is considered to be representative of a 
suburban environment, and also provided a somewhat 
controlled area for this experiment. Though the elements 
involved in this test were stationary, there were multiple 
vehicles and pedestrians moving throughout the campus and 
the testing elements at any given time. In most of the testing 
topologies, trees and some foliage existed between the relay 
node and one of the end nodes. The tests conducted for this 
paper took place toward the end of March with most of the 
foliage not yet in bloom. . Terrain variation also existed 
between test sites, and elevation maps are provided in section 
4.2. Since the intent of this test was not to test radio 
effectiveness or RF propagation and path loss, further 
measurements were not performed. Scans of the spectrum 
before the tests did not reveal any interferers on the 
frequencies being used. 

The antennas used during the tests were the standard 
antennas provided with the man portable units. In the case of 
the TrellisWare radios, the standard dual band antenna was 
used. For the TrellisWare and the WaveRelay radios, the 
antennas were attached to the radio and the radio was mounted 
to the roof of the trailer and vehicles used in the test. For the 
Harris 117G, the antenna was mounted to the roof of the 
trailer and vehicles, but the radio was remoted to the interior, 
using a low loss coax cable. More details on radio 
configuration are given in section 3. 

B. Topologies 
Preliminary tests were conducted using the Harris and 

WaveRelay radios. Given the environment mentioned in 4.1, 
these tests determined that a relay node would be required in 
order to get the desired throughput at the desired distances. 
This intermediate node also tested the protocol’s response to a 
relay, which would be a common occurrence in a wireless ad-
hoc network. End points for the topology were selected to test 
performance at various distances. Figure 2 shows a map 
(courtesy of Google™ Earth) of the overall topology for the 
test. Node locations are labeled and marked with a circle. 
Distance is measured between each marked location in feet. 

For all tests, the server node remained stationary at the 
trailer location. The relay node also remained stationary in the 

South Lot. The client node remained stationary during the 
tests, but then moved to each of the other locations to conduct 
each test. The VIP lot topology involved a server node located 
in the trailer, a relay node in the South Lot, and a client node 
in the VIP Lot. For the Flag Pole topology, the server and 
client remained in their previous locations while the client 
moved to the Flag Pole location for the test. During the Zahl 
Road topology, server and relay remained as before, while the 
client was located on Zahl road. In the K lot topology, server 
and relay remained in their respective locations, while the 
client node moved to the K Lot location for the test. The 
results for these tests are presented and discussed in section 5. 

Figure 3 is an elevation graph of the terrain for the K Lot 
topology. This is provided to show the variability of the 
terrain.  

C. Hardware, Software, and Scenario 
As described in the topologies section, each of the tests 

consisted of three radio nodes and two computer nodes. The 
server node was always fixed at the location marked Trailer 
and consisted of a Dell Precision 6600 Laptop with an Intel 
Core i7 2820QM Processor with 8 GB RAM and a 256 GB 
SSD running Ubuntu Linux 14.04 Desktop 64-bit. Likewise, 

Figure 2: Topology for Protocol Performance Tests 

Table 1: Radio Configuration Parameters 

 Harris 117G Harris RT-1949(P)(C) 4.4.0 ANW2C 402.50 5MHz 2W
TrellisWare CUB TW400 TrellisWare ASY0540250 5.5.6 TSM-E 2230.00 20MHz 2W

WaveRelay MPU4 Persistent Systems WR-MPU4-12 18.5.1 64QAM? 2507.00 40MHz 2W

Channel 
Bandwidth

Transmit 
PowerRadio Name Manufacturer Model 

Number
Firmware 
Version Waveform Frequency in 

MHz

 



the client node was an identically configured laptop located at 
one of the four possible locations marked VIP Lot, Flag Pole, 
Zahl Road, and K Lot. The relay radio node, located at the 
position marked South Lot, was not attached to a computer 
node. 

The experiment scenario was chosen to be very simple – a 
bulk data transfer over a single connection from the client 
node to the server node. This also ensured that there was no 
other traffic being generated at the same time to interfere with 
the single data transfer. As already mentioned, there was no 
mobility involved during the invocation of the test. 

V. EXPERIMENT RESULTS AND ANALYSIS 
Two custom applications were implemented to exercise the 

selected transport protocols – one for the server side and one 
for the client side. The server side instantiated listeners (e.g., 
server sockets) for each of the protocols and simply waited for 
incoming connections. The client node connected to the server 
node using one of the four selected transport protocols, waited 
for a response, sent the size of the data to be uploaded to the 
server followed by the data. The client would then wait until 
the server acknowledged receipt of all the data (done by 
sending a single byte, the character “.”). The client determined 
the throughput by measuring the elapsed time starting after the 
size of the data was sent (but before the transmission of the 
actual data started) and until the acknowledgement was 
received. The size of the data was 1024 KB for the K Lot and 
the Zahl Road topologies and 2048 KB for the Flag Pole and 
VIP Lot topologies. 

Each test was conducted with one of the three radios 
connected to the client and server nodes. The other radios 
were left on and idle (which should not have caused any 
interference given that the frequencies were deconflicted as 
shown in Table 1). In order to reduce temporal effects, the 
client cycled through each of the four transport protocols 
(Mockets first, followed by TCP, then SCTP, and finally 
UDT). This comprised one iteration of the test and each test 
consisted of 10 such iterations. 

The results of the experiment are shown in Table 2. Each 
column represents one particular topology and radio 
combination. Each row presents the results for a specific 
transport protocol for the topology and radio combination. For 
each result, we show the average throughput, the maximum 
throughput, and the minimum throughput, all in KB/sec, over 
10 iterations, followed by the standard deviation. One 
exception is that for the K Lot topology, we only show the 
results for the Harris 117G, as the other two radios did not 
work sufficiently reliably to collect data for multiple 
iterations. For example, when the nodes were connected to the 
TrellisWare radios, they were able to ping each other, but the 
client would time out connecting to the server, the data 
transfers would abort, or the data transfers would essentially 
remain stuck and had to be aborted after several minutes. 

One of the most interesting results of these tests was the 
observed variability in performance across multiple iterations. 
We show the maximum and minimum performance and the 
standard deviation to highlight this observation.  Figure 3, 
Figure 4, Figure 5, and Figure 6 show the results in graphical 
form, for each of the four topologies. The thin vertical bar 
shows the minimum and maximum observed performance. 
The larger rectangle shows one standard deviation above and 
below the mean performance. Note that Figure 6 only shows 
the performance for the Harris radio. As discussed earlier, the 
other two radios were not able to complete the test with this 
topology. 

Figure 3: Terrain Elevation for the K Lot Test Topology 

Harris TrellisWare WaveRelay Harris TrellisWare WaveRelay Harris TrellisWare WaveRelay Harris TrellisWare WaveRelay
Average 260.42 347.02 238.06 257.98 311.85 366.41 182.57 196.77 97.15 57.54
Max 262.09 371.82 403.87 261.99 324.98 581.32 190.23 220.74 117.16 64.89
Min 257.51 309.04 55.61 233.74 263.27 165.19 157.81 158.74 43.97 26.34
St. Dev. 2.02 24.04 101.46 8.68 19.94 159.40 9.93 25.37 24.83 11.70
Average 194.15 175.56 219.49 191.03 147.99 385.46 97.29 85.82 103.86 57.43
Max 199.09 227.53 293.96 201.63 226.45 489.60 126.61 100.83 154.22 100.90
Min 180.00 99.91 158.77 177.87 55.28 267.22 43.01 70.58 64.27 25.52
St. Dev. 7.56 44.38 39.61 10.86 53.30 68.66 28.95 10.75 27.70 21.11
Average 157.01 116.98 255.01 156.53 131.80 365.72 96.38 70.86 97.77 38.90
Max 161.67 165.29 374.27 161.60 164.39 568.26 118.79 103.81 136.12 67.78
Min 117.65 63.27 129.40 121.52 76.56 165.52 36.12 38.55 36.08 17.01
St. Dev. 13.84 40.50 77.37 12.43 33.82 125.85 28.76 21.07 30.23 16.87
Average 154.43 264.69 139.37 127.58 303.91 260.06 128.02 132.70 75.52 58.48
Max 196.15 369.94 265.04 180.28 450.61 436.49 198.03 194.16 104.38 94.74
Min 92.88 147.24 50.51 34.93 86.25 116.33 42.16 49.71 10.73 16.32
St. Dev. 28.11 70.00 67.39 54.45 120.29 98.90 49.70 49.26 27.62 24.91

K Lot Topology

Mockets

TCP

SCTP

UDT

VIP Lot Topology Flag Pole Lot Topology Zahl Road Topology

Table 2: Results showing Average, Maximum, and Minimum Throughput and Standard Deviation 



The variability observed was particularly surprising given 
four simplifications imposed on the experiment. The first 
simplification was that there was no mobility involved 
whatsoever. The second simplification was that all the 
frequencies were deconflicted prior to the test, and none of the 
radios were being interfered with at the RF level. The third 
simplification was that there were only three radio nodes in 
the topology. The fourth simplification was that there were 
only two applications using the radio, with only one active 
data transmission. 

The observed performance was also surprising given the 
distances and the number of nodes in the topologies. As shown 
in Figure 2, the distance between the server node and the relay 
node was always fixed at 673.1 feet. The distance between the 
relay node and the client node varied from 310.13 feet and 
1285.03 feet. 

The next observation is to compare the performance of the 
different transport protocols. As can be observed in Table 2 
and Figure 4, Figure 5, Figure 6, Figure 7 and Figure 8, the 
Mockets protocol performed better than all the other protocols 
on the Harris. In particular, Mockets performed 45% better 
than TCP and 71% better than SCTP and UDT. This result 
was surprising for the Harris radio given that Harris includes a 
TCP accelerator built into the radio when using the ANW2 
waveform. TCP did perform as the second best protocol on the 
Harris radio, slightly beating out SCTP and UDT. 

Figure 8: Cumulative Performance for Different Protocols over Different 
Radios 

Figure 7: Performance Results for Flag Pole Topology Showing Minimum, 
Maximum, and Deviation in Throughput (KB/sec) 

Figure 5: Performance Results for Zahl Road Topology Showing Minimum, 
Maximum, and Deviation in Throughput (KB/sec) 

Figure 4: Performance Results for K Lot Topology Showing Minimum, 
Maximum, and Deviation in Throughput (KB/sec) 

Figure 6: Performance Results for VIP Lot Topology Showing Minimum, 
Maximum, and Deviation in Throughput (KB/sec) 
 



On the TrellisWare radio, Mockets significantly 
outperformed TCP by 109% and SCTP by 167%. It also 
outperformed UDT, but by a smaller margin of 22%. The 
second best performing protocol was UDT, followed by TCP 
and finally SCTP. 

On the WaveRelay radio, Mockets, TCP, and SCTP 
performed just about the same, within 1% to 2% of each other. 
UDT was the worst performing protocol on the WaveRelay 
radio, with Mockets beating UDT by 48%, TCP beating UDT 
by 49%, and SCTP beating UDT by 51%. 

Another surprising observation was that UDT did very well 
on the TrellisWare radio compared to TCP and SCTP, but did 
much worse on the WaveRelay radio than TCP and SCTP. 

As mentioned earlier, we urge the reader to not use these 
results to compare the performance of one radio with another, 
as the characteristics of the radio as well as the configuration 
parameters do not provide a common baseline for such a 
comparison. 

VI. CONCLUSIONS AND FUTURE WORK 
This paper compared the performance of four different 
transport protocols – TCP, SCTP, UDT, and Mockets over 
three different radios – the Harris 117G, the TrellisWare TW-
400, and the WaveRelay MPU4, using four different 
topologies. The tests were conducted in a suburban outdoor 
uncontested RF environment using very simple, static, three 
node topologies, with one server node, one relay node, and 
one client node. The results showed significant variability in 
the results, which was surprising given the conditions of the 
test. Mockets outperformed all the other protocols over the 
Harris and TrellisWare radios, with TCP coming in second on 
the Harris and UDT coming in second on the TrellisWare 
radio. Mockets, TCP, and SCTP performed very similarly on 
the WaveRelay, with UDT not doing as well. 

The observed variability lends support to the argument for 
adaptive middleware to help applications address such 
fluctuations in the network performance. In this particular 
evaluation, all the protocols were compared using the TCP 
model – namely a reliable and sequenced stream of bytes. The 
TCP model is limiting because it does not allow the transport 
protocol to distinguish between message boundaries, and the 
only type of service provided is reliable and sequenced 
delivery of bytes. One consequence is head-of-line blocking, 
which prevents subsequent messages from being delivered 

even if they were received in their entirety. Another 
consequence is that the application cannot specify different 
requirements for different messages. The other three protocols 
evaluated do provide support for message-based abstractions, 
which address some of these concerns. Mockets, which was 
designed specifically for tactical networking environments, 
provides extensive support to enable application adaptation 
[5]. However, many legacy applications still use TCP and 
rewriting them to use an alternate protocol would be difficult, 
expensive, and/or impossible. For those cases, a proxy-based 
approach is a good alternative. The Harris PRC-117G radio 
provides a TCP accelerator (which is a proxy) with ANW2 
(although Mockets provided better performance than TCP, 
even with the accelerator). An independent proxy 
implemented as middleware provides additional flexibility and 
can work with a variety of radios. One such proxy is described 
in [7]. 

The tests conducted to date will continue in the future with 
additional nodes, more complex topologies, and node 
mobility. We also intend to incorporate additional tactical 
radios/waveforms (for example, SRW) and additional 
transport protocols. 
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