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ABSTRACT 

Many important public services, such as security and public 

health, as well as the modern tactical military scenarios, rely on 

Service-oriented Architectures (SoAs) and commercial off-the-

shelf (COTS) components to enable the quick development and 

deployment of distributed services to respond quickly, reduce 

costs, and ease system integration. However, SoAs make use of 

verbose networking technologies and require reliable and 

relatively high bandwidth communications. Tactical scenarios 

normally cannot rely on such infrastructure and events like natural 

disasters can severely damage the network infrastructure in rural 

and urban environments. Thus, there is a need to develop 

solutions that provide SoA-based application and services running 

on heterogeneous and often constrained devices that compose 

tactical and mobile ad-hoc networks with Quality of Service 

(QoS) levels that meet their requirements. This paper presents the 

QoS-enabling features and the gateway operational mode (GM) of 

ACM NetProxy, the network proxy component of a 

communications middleware specifically developed to support 

applications in challenged networks. GM allows nodes in an ad-

hoc wireless network to be quickly organized and to shape 

outbound communications to reduce bandwidth consumption and 

provide QoS. Experimental results obtained during a test in a field 

demonstration event show its efficiency. 

Categories and Subject Descriptors 

C.2.1 [Network communications; Wireless communication]: 

QoS and quick setup of ad hoc wireless networks to restore most 

critical public services during disaster recovery. 

General Terms 

Management, Performance, Design. 

Keywords 

Communications middleware; network proxy; QoS; disaster 

recovery; tactical networks. 

1. INTRODUCTION 
A Service-oriented Architecture (SoA) is a design paradigm that 

enables quick and easy development of distributed services and 

applications. SoAs achieve these results by making available 

components that can be remotely accessed using network 

communication protocols through a well-defined interface. Most 

common SoA solutions base their communications on standard 

web service technologies, such as Simple Object Access Protocol 

(SOAP) or Representational State Transfer (ReST) Application 

Programming Interfaces (APIs), which rely on the exchange of 

XML or JavaScript Object Notation (JSON) documents over plain 

HTTP or embedded in SOAP Remote Procedure Calls (RPC) 

requests and responses. SoA promotes maintainability, 

extensibility, and loose coupling of components and it enables 

reusability of services, composability via orchestration or 

choreography, and their rapid (re)configuration. These advantages 

promoted the adoption of SoAs within large enterprises and 

organizations, which can benefit from the support of a fast and 

reliable network infrastructure, well suited for handling the 

exchange of verbose messages typical of SoA-based systems. 

The benefits provided by SoAs argue in favor of their adoption in 

other networking environments such as Tactical Edge Networks 

(TENs). However, TENs are extremely challenging wireless 

networking scenarios, typically composed of a combination of 

Mobile Ad-hoc Networks (MANETs) and Wireless Sensor 

Networks (WSNs), which suffer from high packet loss due to 

weak signals, interference, and the possible presence of obstacles 

in the medium. Mobility of nodes further deteriorates 

communications in TENs by increasing the network churn rate 

and the frequency of disruptions in end-to-end connections. 

Moreover, connectivity technologies used in TENs are highly 

heterogeneous, composed of segments with different bandwidth, 

latency, reliability, and availability characteristics [1]. Finally, it is 

important to note that computational and connectivity resources of 

nodes, mission objectives, and battlefield characteristics all 

contribute to pose significant constraints on the admissible 

network configuration and on the role that can be played by each 

node. 

Let us note that TENs are a very relevant communication 

environment outside of military applications also. In fact, military 

communication infrastructures and equipment are often deployed 

in disaster recovery situations – a civilian application of essential 

importance. In addition, research in military communications has 

produced several important results outside the warfighting 

domain, such as the concepts, methodologies, and tools that gave 
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birth to research on opportunistic networking and fostered its 

development [20]. 

The peculiar characteristics of TENs make them unsuited for 

SoA-based applications, which were designed for the Internet and 

rely on the Transmission Control Protocol (TCP) to support the 

message exchange between two components. In fact, the verbosity 

of web services does not cope well with the limited bandwidth 

available in TENs, while TCP exhibits many problems in 

wireless, mobile networks that lead to bandwidth underutilization, 

increased network latency, and connection disruptions [2]. 

A middleware-based approach is a very interesting solution to 

enable the porting of SoA-based software to the tactical 

environment. Communications middleware specifically designed 

to support communications in TENs could provide applications 

with the right set of tools, abstractions, and techniques to optimize 

utilization of network resources and increase performance [1] [6]. 

For instance, providing better utilization of the available 

bandwidth, decreased latency and jitter, and resilience to 

connection disruptions would hide applications from the problems 

of challenged networking environments and enable the porting of 

SoA-based applications to TENs while at the same time 

significantly improving their QoS as well. Such a solution is very 

appealing due to its effectiveness and simplicity, but it requires 

changes to all applications that need to access remote resources 

over the network. In addition, a non-negligible portion of TENs is 

composed of significantly resource constrained devices, which 

cannot provide the computational capabilities to run dedicated 

communication components, i.e., middleware or legacy / 

proprietary software solutions, or any kind of adaptation 

component between those solutions and COTS applications. 

To address this issue, this paper proposes a transparent QoS proxy 

approach that leverages the NetProxy component of the Agile 

Computing Middleware (ACM) [3] [4]. ACM NetProxy is a 

network proxy solution that enables the reuse of COTS and SoA-

based applications, and was originally designed to run on each 

node and operate in an end-to-end fashion (Host Mode, or HM, in 

NetProxy terminology). This paper presents a new operational 

mode of ACM NetProxy, called Gateway Mode (GM), that 

provides several advantages over HM. GM brings the advantages 

of NetProxy to all nodes belonging to a network or a subnetwork, 

without having to host the proxy on each node. GM improves the 

network performance while also reducing the computational 

overhead on the nodes and simplifying the necessary 

configuration. Additionally, GM allows many resource-

constrained devices, such as smart phones and sensor nodes, 

which would not be able to run ACM NetProxy, to still benefit 

from its features.  

This paper discusses the operating principles of the GM feature 

and gives some insights on its implementation. It also presents 

some experimental results obtained using ACM NetProxy running 

in GM during a test in a field demonstration event. 

2. CHALLENGES OF RUNNING SOA 

APPLICATIONS OVER TACTICAL 

NETWORKS 
Tactical Edge Networks (TENs) are typically wireless ad-hoc 

networks, with little or no infrastructure support, that are set up in 

case of emergency, e.g., to provide the connectivity service during 

disaster recovery, or to be used in the battlefield during military 

operations, where rapid network reconfiguration is essential to 

withstand changes in the mission’s targets or to respond promptly 

to enemy actions. The wireless nature of the system, ad-hoc 

connectivity and high network churn rate, mobility of nodes, their 

heterogeneity, and rapid changes in the network configuration 

greatly hinder communications between applications. 

Nodes in TENs can be characterized based on the level of 

resources at their disposal (in terms of processing power, memory 

available, battery life, and so on), ranging from battery-powered 

sensors up to high-powered servers at the Tactical Operations 

Center (TOC) or Combat Operations Center (COC). Another 

classification concerns nodes’ degree of mobility, which ranges 

from static, like sensors, to dynamic, e.g., soldier platoons, to 

extremely dynamic, such as (un)manned ground and air vehicles. 

A wide variety of networking technologies provides connectivity 

among all those different types of nodes, including SATCOM 

links, 3G/4G communications, and other local wireless solutions 

such as WiFi and Bluetooth [1]. The great variety in capabilities, 

mobility, and connectivity that describe nodes in TENs puts 

severe limits on the network configuration and on the set of nodes 

that can run some specific services. 

Service-oriented Architectures have earned much success and 

adoption as a solution to the need for rapid service setup, 

deployment, and (re)configuration in large-scale systems. This is 

done thanks to the integration of multiple, independent 

components that can be accessed over the network via well-

defined interfaces. This fosters the reuse of existing components, 

promotes loose coupling and interoperability, and reduces design 

and development times. Moreover, the usage of directory and/or 

discovery services permits the dynamic addition of entities to 

satisfy new needs that arise during the lifetime of the system and 

to increase fault resilience. 

These features are extremely appealing in tactical environments, 

as proved by their adoption in projects such as the US Army 

Technical Reference Model (TRM) [5] and the US Marine Corps 

Tactical Service Oriented Architecture (TSOA). However, SoA 

implementations typically rely on verbose Web Services 

technologies over TCP connections. The resulting high bandwidth 

demands and the inability to cope with link disruptions that follow 

from such technologies only suit infrastructure networks capable 

of providing reliable, high-speed connectivity among the parts of 

the SOA. 

These problems identify additional requirements for SoA-based 

applications that need to operate in TENs. A solution is needed to 

better support SoA services in the face of limited bandwidth, high 

and variable latencies, frequent link disruptions, and network 

partitioning. 

3. ENABLING THE REUSE OF SOA AND 

COTS APPLICATIONS USING A 

GATEWAY NETWORK PROXY 
Communications middleware specifically designed for TENs 

represent an appealing solution to effectively port SoA-based 

applications and services to that operating environment [1]. In 

fact, middleware solutions specifically designed to support 

communications in extremely challenging networking 

environments would provide applications with the right set of 

functionalities, abstractions, and techniques to optimize the access 

to and the utilization of network resources, and ultimately increase 

performance. By relying on such a solution, service designers and 

developers can focus their efforts on the business logic instead of 

dealing with networking-related issues and challenges. This 



promotes productivity and final software quality, and it also 

reduces design, development, and maintenance costs [6]. 

While this approach is very interesting due to its effectiveness and 

simplicity, it still requires all networked services and applications 

to be modified before they can exploit any of the communications 

middleware capabilities. In many cases, with legacy and COTS 

software solutions, such modifications are not possible or, even 

when technically feasible, would be prohibitively costly in terms 

of time and money. For these reasons, it is essential to find an 

effective way to bridge the gap between the communications 

middleware and the existing applications. 

A rather simple and effective solution involves inserting a 

transparent QoS adaptation layer between the applications and 

the communications middleware. This layer consists of a smart 

component that is capable of remapping service requests and 

applications’ communications to the right methods and concepts 

provided by the middleware in a completely transparent manner. 

This way, applications can have access to the optimizations and 

the enriched networking features of the communications 

middleware without the need for changes in their source code. 

This is an approach we followed with success with ACM 

NetProxy [4]. 

Nonetheless, the increasing presence of constrained devices in 

TENs pose several challenges to this approach. The very low 

resources available on many types of nodes in TENs often prevent 

additional components (or even the communications middleware 

itself) from running on those devices. Security and other tactical 

policies might also hinder the installation of additional software 

on some nodes, and the presence of multiple enterprises and 

stakeholders that control the nodes further aggravates this 

condition. 

Instead, a more promising approach is a transparent QoS proxy 

based on the deployment of the transparent QoS adaptation 

component on a resource rich node operating as a gateway for 

constrained devices. This approach addresses the challenges 

described above by separating the location of applications from 

that of the communications middleware and QoS optimization 

components. More specifically, the transparent QoS proxy 

approach avoids the emergence of policy-related problems that 

would prevent the installation of additional components on the 

nodes. Furthermore, it allows the middleware to be installed only 

on nodes with sufficient computational and memory resources and 

located at convenient points in the network or covering some 

specific role in the TEN. For example, nodes that are central to the 

network or in gateway positions would be better able to observe 

the network traffic to infer the network state. 

The transparent QoS proxy running on the gateway node 

intercepts and processes all traffic generated by (typically 

constrained) nodes within a portion of the network (labeled as 

“Internal Network” (IN)) and forwards it to destinations with the 

support of the communications middleware. The gateway node 

effectively separates the nodes belonging to the IN from the rest 

of the network, or “External Network” (EN), and hence it 

becomes a gateway for the IN. We will refer to this node as 

“gateway” or “proxy gateway”, interchangeably. As a 

consequence, the network topology might affect the choice of the 

node that will host the proxy. 

Of course, it is essential to pay attention at deployment time: all 

the nodes in the TEN that want to exploit the transparent QoS 

enhancement features convey the traffic to and from their 

communicating peers through the gateway node running the 

transparent QoS proxy. However, most typical network 

configurations often have a single gateway node that regulates 

communications to and from network addresses that are locally 

unreachable, and so this is usually not a problem. In any case, any 

communications that do not go through the gateway node can still 

proceed normally, but they will not take advantage of the QoS 

improvements provided by NetProxy. 

4. ACM NETPROXY 
The ACM [1] is a communications middleware that provides 

applications with a rich collection of capabilities to improve 

network performance and resource utilization. The features of the 

ACM include network monitoring, data transport, data 

dissemination, resource and service discovery, transparent 

network proxy, and network visualization. Many components of 

the ACM, including NetProxy, are available on GitHub 

(http://www.github.com/ihmc/nomads) as open source. 

ACM NetProxy [3] [4] provides transparent integration between 

networked applications and the ACM. The most relevant features 

of NetProxy include QoS improvement and adaptation 

mechanisms such as network protocol remapping, traffic 

characterization, data compression, intelligent buffering, flow 

prioritization, connection multiplexing, and packet consolidation. 

Protocol remapping allows forwarding (part of) the traffic 

generated by applications over other network protocols or other 

components of the ACM, such as Mockets, DisService, and 

DSPro, transparently. Network traffic characterization constantly 

analyzes the volume of traffic in the network to provide the 

decision making component of NetProxy with updated 

information about what nodes and applications are generating 

traffic, what types of data are being transmitted, the current 

bandwidth consumption, and observed radio/link performance. 

Thus, the QoS related decision making process in NetProxy is 

both application- and network- aware. 

Application-awareness allows NetProxy to choose the QoS 

improvement techniques that best suit the data exchanged, e.g., 

preferring data-specific compression schemas over general 

purpose compression algorithms, prioritizing the data produced by 

most critical services or addressed to important nodes of the TEN, 

or identifying traffic flows that would benefit from the delivery 

semantics and the features of other ACM components. Similarly, 

network-awareness guarantees that NetProxy can select the 

network protocols and/or the components of the middleware that 

better match the state and the characteristics of the network, in 

terms of bandwidth availability, average latency, link reliability, 

nodes’ mobility, etc. 

ACM NetProxy is open source and was designed for easy 

extensibility. These properties make it possible for users to simply 

enhance the protocol remapping functionality of NetProxy with 

support for other transport protocols or communications libraries, 

such as the Stream Control Transmission Protocol (SCTP) [13] 

and UDP-based Data Transfer (UDT) [14]. Additionally, 

NetProxy supports two operational modes, namely Host Mode 

(HM) and Gateway Mode (GM), which allows it to be used in 

many different network configurations and satisfy various 

requirements. 

The objective of making NetProxy an extremely flexible solution 

while maintaining complete application transparency underlies all 

our design choices and motivated the development of many 

features. By giving applications access to the features of the 

middleware without requiring any changes to their source code, 



NetProxy becomes the keystone to enable the reuse of SoA and 

COTS components in TENs. 

In order to provide its services to networked applications 

transparently, ACM NetProxy intercepts and process all packets 

they send over the network. This way, the proxy can acquire 

knowledge on the traffic that the network will need to 

accommodate, and exploit it to improve the decision making 

process to a point that single applications, or even other 

components of the middleware, would not be able to reach. 

When packet interception occurs, NetProxy analyzes its content to 

extract useful information, including the source and destination 

IP:port pairs, the transport protocol used, other interesting fields 

in the protocol header, e.g., flags or enabled options in the header 

of TCP packets, and the type of data carried within the packet. 

NetProxy can further enrich this information with the data 

provided by other ACM components. For instance, Mockets has 

both an active and passive measuring system that allows the ACM 

component to learn about the characteristics of end-to-end 

connections and equipped network interfaces. NetProxy can 

leverage this feature of Mockets to acquire fundamental 

information, e.g., the RTT of the connection to the tactical 

operation center over the SATCOM interface. 

Combining this knowledge together with the status of its internal 

buffers and user-provided information, NetProxy can build an 

accurate representation of the state of the network and the open 

connections and use it to manage better the available resources 

and respond to the QoS requirements of proxied traffic. 

The configuration of the QoS module of NetProxy is currently 

read from a file; a template is available to users, who can modify 

it and specify several options to instruct NetProxy on how to 

manipulate the traffic flowing through the proxy gateway and 

enable QoS for specific data streams. Possible actions include 

enabling/disabling data compression and choosing data-specific 

compression algorithms, reducing the resolution of images and 

video streams, consolidating multiple packets addressed to the 

same destination, reserving a greater amount of bandwidth for 

some connections (traffic flow prioritization), temporarily 

disrupting connections when the available bandwidth goes below 

a threshold, temporarily switching reliability in specific end-to-

end connections to partial reliability or best-effort, remapping 

communications over different transport protocols, and changing 

the information dissemination strategy for multicast and broadcast 

communications. 

Some types of traffic manipulation, such as packet consolidation, 

protocol remapping, or data compression, require a second 

instance of NetProxy to perform the inverse operations on the 

other end of communications to preserve transparency. When this 

happens, it is not necessary that the operational modes chosen for 

the two instances of NetProxy are equal. Hence, the operational 

mode can be chosen uniquely to satisfy other types of 

requirement, such as those due to limited nodes’ capability, 

network topology, or policies enforced by one or more tactical 

entities, thereby keeping the flexibility of our solution high. 

5. THE GATEWAY MODE OF ACM 

NETPROXY 
GM differs from HM in the way ACM NetProxy intercepts 

packets and in the role that the node running the proxy needs to 

assume in the network. In [3] we described in detail the design of 

HM and its main requirements. To summarize briefly, HM 

requires all nodes hosting components of a SoA or running pieces 

of COTS software that need to benefit from the ACM to run a 

copy of the NetProxy locally. To enable packet capturing before 

packets are sent out over the network, HM also necessitates the 

installation of a virtual network interface and to configure the 

proxy properly on each node. 

When configured to run in GM, NetProxy implements the 

gateway network proxy solution described in section 3. Therefore, 

to function properly in this operational mode, ACM NetProxy has 

to run on nodes equipped with at least two network interfaces. The 

proxy uses one of them, named “internal interface”, to intercept 

all packets generated by nodes in the IN and addressed to nodes 

that do not belong to the same subnetwork. The other interface, 

labelled “external”, is used to send the captured traffic to remote 

destinations after the NetProxy has processed it. Figure 1 shows a 

TEN with two instances of NetProxy running in GM and two 

running in HM. In this example, all connections and messages 

generated by nodes belonging to the IN of some proxy gateway 

have to go through a proxying node to communicate to nodes on 

their EN. 

Compared to HM, GM does not require the installation of virtual 

network interfaces, nor does it need to run a copy of NetProxy on 

each node that hosts SoA services or COTS applications. 

Furthermore, GM reduces the amount of configuration required, 

since there is only one instance for the entire sub-network, as 

opposed to one for each node when in HM. 

Another very important difference is that GM allows NetProxy to 

build a comprehensive picture of the traffic that nodes in the IN 

are generating, what services are being requested, and what kind 

of data is being transferred. On the other hand, HM only allows 

the proxy to learn about local services, thus limiting the efficiency 

of the decision-making process. Moreover, it is often the case that 

the external network interface (ENI) of gateway nodes in TENs is 

different from the internal network interface (INI), thereby 

providing links with very different characteristics and that usually 

become bottlenecks in remote network communications. By 

running NetProxy in GM and installing it on a gateway node, the 

proxy can estimate the bandwidth capacity, the average latency, 

and the reliability of these links more easily; this information is 

extremely useful to further improve the quality of the decision-

making process. 

Operations Center

SATCOM

MANET
GM

GM

HM

HM

 

Figure 1.Tactical Network Scenario with NetProxy 



It is entirely possible to have the equivalent of NetProxy running 

directly on a router or wireless network device. For example, in a 

tactical networking scenario, a vehicle such as a Humvee could 

have a local area network (LAN) to support users tethered to the 

vehicle, which then connects to a wireless router / device that 

provides the off-vehicle connectivity. NetProxy in GM would 

either run between the LAN and the wireless device, or could be 

directly integrated into the wireless device for complete 

transparency. 

When running in GM, ACM NetProxy uses libpcap 

(http://www.tcpdump.org/) to sniff packets on both the internal 

and the external network. To intercept and process network 

packets transparently, ACM NetProxy first needs to implement a 

customized version of the Address Resolution Protocol (ARP). 

Figure 1 shows the physical configuration of a tactical network 

where two nodes take on the role of proxy gateway and run 

NetProxy (the other two nodes are running NetProxy in HM). At 

the Operations Center (OC), NetProxy’s INI is connected to the 

LAN and the ENI is connected to the SATCOM terminal. 

Likewise, on the tactical vehicle, the INI is connected to the 

MANET and the ENI is connected to the SATCOM terminal. 

Consistent with the design principle of transparency, no nodes 

attached to the vehicle MANET network or the OC LAN network 

require changes in their configuration. Three different cases might 

occur. The first case is very simple, and it refers to two nodes in 

the IN or in the EN that needs to communicate. In such a 

situation, the proxy gateway node will not partake in the ARP 

address resolution, but NetProxy will still cache the 

hardware/protocol addresses pair of the two nodes involved in the 

communication. This is possible thanks to libpcap, which allows 

the sniffing of packets regardless of their destination. Note that 

NetProxy maintains an associative array of hardware/IP address 

pairs, with the IP address as key, which is updated any time new 

ARP packets are sniffed. This also allows NetProxy to learn and 

keep track of which nodes belong to the IN, and which ones 

belong to the EN. 

The second case involves a node in the IN that wants to 

communicate with a node in the EN, or vice versa. When either 

happens, NetProxy intercepts the ARP request, changes the source 

hardware address (SHA) of the requester with that of the ENI of 

the proxy gateway, and finally forwards the modified packet on 

the other network interface. Similarly, NetProxy will change the 

SHA of the corresponding ARP response before forwarding it 

back on the first network interface. After address resolution is 

resolved, data exchange can begin. NetProxy will forward packets 

from one network interface to the other if and only if two 

conditions are met: (1) the MAC destination address in the 

packets’ header is that of the ENI; and (2) the IP destination 

address is that of some node in the other subnetwork. The reason 

we chose to modify the SHA field in ARP packets is twofold: for 

clarity’s sake, as it makes it straightforward to identify packets 

that need to be forwarded from one subnetwork to the other, and 

for consistency with the third case. 

The last case, and also the most interesting one, concerns a node 

(we will also refer to it as “source”) in the IN that needs to send 

data to a remote host (also, “destination”). If ACM NetProxy is 

configured to remap the traffic between those two endpoints, then 

it is necessary that either the destination node runs an instance of 

ACM NetProxy in HM, or it is located behind another proxy 

gateway running NetProxy in GM. For the purposes of this paper, 

we will only consider this latter case. Before data exchange 

begins, the source will generate an ARP request to which 

NetProxy will reply to inform that the target IP address is 

reachable through the ENI of the proxy gateway. On the 

destination’s side, the remote NetProxy instance will generate an 

ARP request to obtain the MAC address of the destination node. 

Once the address is resolved, the end-to-end communication can 

proceed and the nodes involved can take advantage of the features 

of NetProxy and of the ACM, in accordance with the configured 

options. Note that, in case NetProxy is not configured to remap or 

process the traffic between a node in the IN and some target 

remote node, the proxy will forward packets to the network 

gateway, which will take care of their delivery. This allows 

complete transparency from the point of view of the applications. 

ACM NetProxy running in GM requires the assignment of an IP 

address only to the ENI and it will make use only of the MAC 

address of that interface when sending ARP packets. We made 

this design choice in order to reduce the consumption of IP 

addresses, which might be a limited resource in some complex 

network configurations, especially when many different parties 

are involved. 

6. EXPERIMENTAL RESULTS 
We experimentally evaluated the impact of ACM NetProxy in a 

reference scenario based on Agile Bloodhound, an annual 

technology demonstration event held by the US Department of 

Defense (DoD) Office of Naval Research (ONR) 

(http://www.onr.navy.mil/Media-Center/Press-

Releases/2014/Agile-Bloodhound-ISR-C2-Logistics.aspx). The 

rationale is to simulate typical operations involving multiple 

information flows with different characteristics in terms of both 

the type and the amount of data transferred. Among them, the 

most relevant flows consist of friendly (blue) and enemy (red) 

force tracks, sensor reports (audio, images, and/or video feeds), 

documents (intelligence reports and logistics reports), and chat 

messages. 

In the experiment, several military hub vehicles are connected to 

the Operations Center (OC) using SATCOM communications 

links. The purpose of each hub vehicle is to support and provide 

connectivity to a number of dismounted soldiers, who move either 

on foot or in vehicles of their own, and use their devices to set up 

a MANET for communications. The movements of soldiers and 

vehicles during the event reproduced the patterns of a realistic 

tactical mission. An instance of ACM NetProxy was running in 

GM on a node in the network of the OC where it was able to 

intercept all traffic to and from the SATCOM link. Similarly, all 

deployed hub vehicles had network gateway machines on which 

NetProxy was installed and configured to run in GM. This way, 

all traffic had to go through one of the NetProxy instances before 

being transmitted over the SATCOM links in any direction. 

We configured all NetProxy instances to remap outgoing 

transmissions, both UDP and TCP, over a reliable Mockets 

connection open on the SATCOM link. We then enabled the QoS 

options for data compression with all streams (we used the Zlib 

library, an open source lossless compression algorithm available 

online at http://www.zlib.net), and packet consolidation for all 

UDP messages addressed to the same destination. Note that 

NetProxy always performs buffering of the traffic on the IN and 

sends buffered data out on the EN in accordance with the 

configured prioritization settings. Since no flow prioritization was 

configured for this experiment, by default NetProxy tries to 

achieve flow fairness by equally sharing the bandwidth available 

on the ENI, as measured by Mockets. 



Table 1. Mean, standard deviation, and maximum value of 

bytes and packets sent over the network in each 0.1s interval 

before and after traffic was processed by the NetProxy 

 
Generated Traffic (Bytes) Packets sent 

Mean Std. Dev. Max Mean Std. Dev. Max 

Before 5269.3 15510.9 192656 6.41 22.93 312 

After 3656.8 5168.0 15777 3.66 4.79 39 

 

Given the very large amount of data collected during the 

experiment, this section only presents the analysis of one of the 

most significant portion of traffic: the one containing red and blue 

tracks and sensor reports flowing from the OC to one of the hub 

vehicle nodes (which served all the handhelds devices in the 

MANET). However, all instances of ACM NetProxy were 

configured to perform the same operations on the data, whose 

type and magnitude were comparable across the different teams 

deployed in the scenario. Therefore, we can state that the narrower 

focus of our restricted analysis does not affect the purpose of this 

discussion significantly. 

For our analysis, we divided the whole duration of the experiment 

in time intervals of 0.1 seconds and allocated each network event 

in its corresponding slot. Table 1 presents a statistical summary of 

collected measurements. It compares the generated traffic (in 

bytes) and the number of packets sent before and after the traffic 

was processed by NetProxy. Reported statistics include arithmetic 

mean, standard deviation, and maximum number of bytes and 

packets sent over the network in a single interval. The traffic after 

going through NetProxy is substantially less than the amount 

generated by the nodes in the IN. Looking at the mean, the effects 

of data compression and packets consolidation are evident, and 

show a reduction of 30.6 percent in the average number of 

generated bytes and of 42.9 percent in the average number of 

packets sent. Finally, the standard deviation also appears 

significantly lower after the network traffic has gone through 

NetProxy. This result entails a less bursty and smoother network 

activity on the EN compared to the activity on the IN, as figures 

3a and 3b below depict better. 

Reducing burstiness is essential to enable NetProxy to provision 

the required QoS. First of all, it avoids many packets being lost on 

the bottlenecked links due to sudden peaks in the network activity 

in absence of congestion control. An example would be 

applications that rely on UDP to transfer data because reliable 

and/or ordered delivery of messages is not necessary. Smoother 

data flows also imply a wiser use of the bandwidth on the 

bottlenecked links because it cuts the frequency of peaks in 

network activity followed by periods with very low traffic, during 

which the available bandwidth would be wasted. Finally, keeping 

burstiness under control reduces the end-to-end jitter experienced 

by applications, a very important consequence for all classes of 

real-time applications. 

Figures 2a and 2b show in more detail the effects of data 

compression and packet consolidation in ACM NetProxy. The 

figures present the data collected during one of the busiest time 

windows of the demonstration, which spans from 500 to 800 

seconds after the beginning of the experiment and includes 

significant levels of network activity. Figure 2a represents, with 

light gray bars, the traffic (in KiB) flowing in the IN, and with a 

dark gray color the traffic sent over the EN by NetProxy. 

Similarly, Figure 2b highlights the difference between the number 

of packets flowing in the IN and the EN before and after NetProxy 

processed the traffic. The graphs show that NetProxy significantly 

reduces bandwidth consumption by sending less data out on the 

EN and generating less packets, which in turn also increases 

efficiency, especially with radios that are packet rate limited or 

when packet transmission is preceded by a channel access 

negotiation phase, such as with wireless network interfaces that 

implement the IEEE 802.11 specifications and standards [19]. 

Figures 3a and 3b depict the empirical density distribution of the 

number of bytes and packets, respectively, which were sent over 

the internal and external networks in each of the 0.1s long 

intervals in which we partitioned the experiment. The figures 

show how the buffering strategy implemented in NetProxy is 

capable of making traffic usage patterns much smoother and more 

regular, compared to the burstiness that would normally 

characterize them. This allows for an easier accommodation of the 

network traffic and leads to more predictable performance. We 

chose to limit the data reported on the X axis of the two graphs to 

20 KiB and 20 packets, respectively, to better show the 

differences in shape between the two density distributions. In 

Figure 3a, very sharp peaks (representing the data measured in the 

IN) stand out against a smooth curve (that represents the data 

sampled in the EN). Similarly, Figure 3b shows that the density 

distribution of the number of packets in the EN during each 

interval has much gentler slopes than that describing the 

conditions in the IN in the same intervals. Finally, we note that the 

tail of the curves marked as “Before” would reach almost 200 KiB 

in Figure 3a, and go beyond 300 packets in Figure 3b. We chose 

not to represent all data because it would have resulted in almost 

unintelligible graphs. 

7. RELATED WORK 
The literature recognizes the efficacy of middleware-based 

approaches for the resource management in TENs. Both [6] and 

[7] focus their effort on optimizing the allocation of resources 

between competing applications and nodes in the network. More 

specifically, the authors of [7] propose a middleware that is 

capable of dynamically tuning the network’s configuration and 

QoS to meet the applications’ requirements under the constraints 

dictated by the current network conditions. Our solution, instead, 

focuses on providing QoS enhancements to applications 

transparently and remapping their communications over other 

components of the middleware in order to increase efficiency and 

reduce the impact on the network resources. 

The authors of [8] also propose a transparent network proxy, 

which aims at increasing the performance of TCP by 

implementing advanced buffer and packet management solutions 

in wireless environments. The Space Communications Protocol 

Specification - Transport Protocol (SCPS-TP) (available on the 

Web at http://openchannelsoftware.com/projects/SCPS) is another 

transparent network proxy that enhances TCP and UDP for use in 

spacecraft communications environments. Our approach goes 

beyond these solutions, which focus only on improving TCP for 

use under specific conditions, as it exploits a comprehensive 

communications middleware that provides the delivery semantics 

and communication paradigms that best fit applications’ needs. 

Other proposals, such as I-TCP [9], Mobile-TCP [10], and the 

Remote Sockets Architecture [11], represent proxy-based 

solutions that aim to improve TCP in wireless networks. 

Differently from our proposal, these systems are not transparent to 

applications and do not provide any specific QoS features to meet 

applications’ requirements, but they simply focus on increasing 

the throughput of TCP in wireless networks and its resilience to 

mobility. 



  

Figure 2. Difference in the number of a) bytes, and b) packets, sent over the network before and after traffic was processed by the 

NetProxy 

  

Figure 3. Density distribution of a) the number of bytes (plot limited to 20 KiB), and b) the number of packets (plot limited to 20 

packets) before and after traffic was processed by the NetProxy 

The ACM NetProxy can be classified as a splitting distributed 

Performance Enhancing Proxy (PEP) [12]. PEPs exist both as 

hardware and software solutions, and mostly focus on resolving 

specific issues that TCP exhibits over particular media or network 

configurations, such as wireless, satellite, or high bandwidth-delay 

product links. Unlike them, the NetProxy supports other protocols 

besides TCP and it adapts to a variety of networks. Moreover, 

NetProxy can be configured to provide a variety of QoS 

enhancements to specific data streams and communications. 

Several works in the literature focus on systems and techniques to 

provision QoS to applications in TENs and MANETs. Hauge et 

al. study the issues of providing QoS in heterogeneous tactical 

networks and present two QoS-aware network architectures for 

inter- and intra- domain networks, respectively [15]. However, the 

paper does not present any experimental evaluation of the 

proposed solution, and the authors claim that the interactions 

between the two architectures needs further study. Authors of [16] 

propose a QoS routing system for MANETs based on the 

assumption that all nodes can take part in the routing process and 

that they are equipped with one or more network interfaces 

capable of operating at one of many independent channels. The 

paper then focuses only on the problems of clustering and channel 

allocation. 

Kim et al. present a QoS framework for tactical networks based 

on commercial technologies like DiffServ and SNMP [17]. The 

framework assumes a hierarchical network architecture with 

leader nodes that enable communications between one layer of the 

hierarchy and the one above. These types of network architecture 

and nodes organization are essential to permit nodes to negotiate 

their QoS levels within the layers. The paper concludes presenting 

the results of a simple experimental evaluation, performed using a 

setup composed of only three static nodes. 

In [18], the authors propose QAM, a QoS-aware middleware for 

communications in tactical environments. To the best of our 

knowledge, this work shows the highest number of similarities 

with the ACM. QAM includes components that provide tunable 

end-to-end connections, point-to-multipoint communications, 

quality adjustment and admission control features based on 

measurements of channels and open links, and a transparent proxy 

component for legacy applications. Nonetheless, the legacy proxy 

does not interface legacy applications with all components of 

QAM, but only with the admission control component. In 

addition, important features such as data compression and packets 

consolidation seem to be missing, and the QoS level provided by 

QAM is based on classes, so it cannot be independently 

configured for each flow. 



8. CONCLUSIONS AND FUTURE WORK 
ACM NetProxy GM function bridges the gap between services 

and applications and the Agile Computing Middleware, a 

communications middleware specifically designed to support 

communications in extremely challenged networking 

environments, such as TENs. As shown by experimental results 

obtained during a test in a field demonstration event, GM enables 

multiple nodes in subnetworks to benefit from NetProxy and the 

ACM. This is particularly useful to support handheld devices, 

embedded devices, and other resource-constrained devices that 

cannot directly run NetProxy in HM. It will be very interesting to 

investigate the impact of node mobility, with a particular focus on 

gateway nodes, on the efficacy of NetProxy to provide QoS to the 

nodes in the internal network. Other work will aim to increase the 

intelligence of the decision-making process in ACM NetProxy to 

enable dynamic adaptation of policies in place. Finally, we will 

focus further on network state estimation and reprioritization of 

resource allocation based on the current mission and/or node 

objectives. 
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