
A Proxy Gateway Solution to Provide QoS in Tactical
Networks and Disaster Recovery Scenarios

Alessandro Morelli, Cesare Stefanelli, Mauro
Tortonesi

Department of Engineering
University of Ferrara

Ferrara, Italy
+39 0532 974988

{alessandro.morelli, cesare.stefanelli,
mauro.tortonesi}@unife.it

Rita Lenzi1, Niranjan Suri1,2
1Florida Institute for Human and Machine Cognition

Pensacola, FL, USA
2US Army Research Laboratory

Adelphi, MD
+1 850 202 4444

{rlenzi,nsuri}@ihmc.us

ABSTRACT

Many important public services, such as security and public

health, as well as the modern tactical military scenarios, rely on

Service-oriented Architectures (SoAs) and commercial off-the-

shelf (COTS) components to enable the quick development and

deployment of distributed services to respond quickly, reduce

costs, and ease system integration. However, SoAs make use of

verbose networking technologies and require reliable and

relatively high bandwidth communications. Tactical scenarios

normally cannot rely on such infrastructure and events like natural

disasters can severely damage the network infrastructure in rural

and urban environments. Thus, there is a need to develop

solutions that provide SoA-based application and services running

on heterogeneous and often constrained devices that compose

tactical and mobile ad-hoc networks with Quality of Service

(QoS) levels that meet their requirements. This paper presents the

QoS-enabling features and the gateway operational mode (GM) of

ACM NetProxy, the network proxy component of a

communications middleware specifically developed to support

applications in challenged networks. GM allows nodes in an ad-

hoc wireless network to be quickly organized and to shape

outbound communications to reduce bandwidth consumption and

provide QoS. Experimental results obtained during a test in a field

demonstration event show its efficiency.

Categories and Subject Descriptors

C.2.1 [Network communications; Wireless communication]:

QoS and quick setup of ad hoc wireless networks to restore most

critical public services during disaster recovery.

General Terms

Management, Performance, Design.

Keywords

Communications middleware; network proxy; QoS; disaster

recovery; tactical networks.

1. INTRODUCTION
A Service-oriented Architecture (SoA) is a design paradigm that

enables quick and easy development of distributed services and

applications. SoAs achieve these results by making available

components that can be remotely accessed using network

communication protocols through a well-defined interface. Most

common SoA solutions base their communications on standard

web service technologies, such as Simple Object Access Protocol

(SOAP) or Representational State Transfer (ReST) Application

Programming Interfaces (APIs), which rely on the exchange of

XML or JavaScript Object Notation (JSON) documents over plain

HTTP or embedded in SOAP Remote Procedure Calls (RPC)

requests and responses. SoA promotes maintainability,

extensibility, and loose coupling of components and it enables

reusability of services, composability via orchestration or

choreography, and their rapid (re)configuration. These advantages

promoted the adoption of SoAs within large enterprises and

organizations, which can benefit from the support of a fast and

reliable network infrastructure, well suited for handling the

exchange of verbose messages typical of SoA-based systems.

The benefits provided by SoAs argue in favor of their adoption in

other networking environments such as Tactical Edge Networks

(TENs). However, TENs are extremely challenging wireless

networking scenarios, typically composed of a combination of

Mobile Ad-hoc Networks (MANETs) and Wireless Sensor

Networks (WSNs), which suffer from high packet loss due to

weak signals, interference, and the possible presence of obstacles

in the medium. Mobility of nodes further deteriorates

communications in TENs by increasing the network churn rate

and the frequency of disruptions in end-to-end connections.

Moreover, connectivity technologies used in TENs are highly

heterogeneous, composed of segments with different bandwidth,

latency, reliability, and availability characteristics [1]. Finally, it is

important to note that computational and connectivity resources of

nodes, mission objectives, and battlefield characteristics all

contribute to pose significant constraints on the admissible

network configuration and on the role that can be played by each

node.

Let us note that TENs are a very relevant communication

environment outside of military applications also. In fact, military

communication infrastructures and equipment are often deployed

in disaster recovery situations – a civilian application of essential

importance. In addition, research in military communications has

produced several important results outside the warfighting

domain, such as the concepts, methodologies, and tools that gave

© 2015 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee,

contractor or affiliate of the United States government. As such, the

United States Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for

Government purposes only.

Q2SWinet’15, November 2-6, 2015, Cancun, Mexico

© 2015 ACM. ISBN 978-1-4503-3757-1/15/11…$15.00

DOI: http://dx.doi.org/10.1145/2815317.2815318

birth to research on opportunistic networking and fostered its

development [20].

The peculiar characteristics of TENs make them unsuited for

SoA-based applications, which were designed for the Internet and

rely on the Transmission Control Protocol (TCP) to support the

message exchange between two components. In fact, the verbosity

of web services does not cope well with the limited bandwidth

available in TENs, while TCP exhibits many problems in

wireless, mobile networks that lead to bandwidth underutilization,

increased network latency, and connection disruptions [2].

A middleware-based approach is a very interesting solution to

enable the porting of SoA-based software to the tactical

environment. Communications middleware specifically designed

to support communications in TENs could provide applications

with the right set of tools, abstractions, and techniques to optimize

utilization of network resources and increase performance [1] [6].

For instance, providing better utilization of the available

bandwidth, decreased latency and jitter, and resilience to

connection disruptions would hide applications from the problems

of challenged networking environments and enable the porting of

SoA-based applications to TENs while at the same time

significantly improving their QoS as well. Such a solution is very

appealing due to its effectiveness and simplicity, but it requires

changes to all applications that need to access remote resources

over the network. In addition, a non-negligible portion of TENs is

composed of significantly resource constrained devices, which

cannot provide the computational capabilities to run dedicated

communication components, i.e., middleware or legacy /

proprietary software solutions, or any kind of adaptation

component between those solutions and COTS applications.

To address this issue, this paper proposes a transparent QoS proxy

approach that leverages the NetProxy component of the Agile

Computing Middleware (ACM) [3] [4]. ACM NetProxy is a

network proxy solution that enables the reuse of COTS and SoA-

based applications, and was originally designed to run on each

node and operate in an end-to-end fashion (Host Mode, or HM, in

NetProxy terminology). This paper presents a new operational

mode of ACM NetProxy, called Gateway Mode (GM), that

provides several advantages over HM. GM brings the advantages

of NetProxy to all nodes belonging to a network or a subnetwork,

without having to host the proxy on each node. GM improves the

network performance while also reducing the computational

overhead on the nodes and simplifying the necessary

configuration. Additionally, GM allows many resource-

constrained devices, such as smart phones and sensor nodes,

which would not be able to run ACM NetProxy, to still benefit

from its features.

This paper discusses the operating principles of the GM feature

and gives some insights on its implementation. It also presents

some experimental results obtained using ACM NetProxy running

in GM during a test in a field demonstration event.

2. CHALLENGES OF RUNNING SOA

APPLICATIONS OVER TACTICAL

NETWORKS
Tactical Edge Networks (TENs) are typically wireless ad-hoc

networks, with little or no infrastructure support, that are set up in

case of emergency, e.g., to provide the connectivity service during

disaster recovery, or to be used in the battlefield during military

operations, where rapid network reconfiguration is essential to

withstand changes in the mission’s targets or to respond promptly

to enemy actions. The wireless nature of the system, ad-hoc

connectivity and high network churn rate, mobility of nodes, their

heterogeneity, and rapid changes in the network configuration

greatly hinder communications between applications.

Nodes in TENs can be characterized based on the level of

resources at their disposal (in terms of processing power, memory

available, battery life, and so on), ranging from battery-powered

sensors up to high-powered servers at the Tactical Operations

Center (TOC) or Combat Operations Center (COC). Another

classification concerns nodes’ degree of mobility, which ranges

from static, like sensors, to dynamic, e.g., soldier platoons, to

extremely dynamic, such as (un)manned ground and air vehicles.

A wide variety of networking technologies provides connectivity

among all those different types of nodes, including SATCOM

links, 3G/4G communications, and other local wireless solutions

such as WiFi and Bluetooth [1]. The great variety in capabilities,

mobility, and connectivity that describe nodes in TENs puts

severe limits on the network configuration and on the set of nodes

that can run some specific services.

Service-oriented Architectures have earned much success and

adoption as a solution to the need for rapid service setup,

deployment, and (re)configuration in large-scale systems. This is

done thanks to the integration of multiple, independent

components that can be accessed over the network via well-

defined interfaces. This fosters the reuse of existing components,

promotes loose coupling and interoperability, and reduces design

and development times. Moreover, the usage of directory and/or

discovery services permits the dynamic addition of entities to

satisfy new needs that arise during the lifetime of the system and

to increase fault resilience.

These features are extremely appealing in tactical environments,

as proved by their adoption in projects such as the US Army

Technical Reference Model (TRM) [5] and the US Marine Corps

Tactical Service Oriented Architecture (TSOA). However, SoA

implementations typically rely on verbose Web Services

technologies over TCP connections. The resulting high bandwidth

demands and the inability to cope with link disruptions that follow

from such technologies only suit infrastructure networks capable

of providing reliable, high-speed connectivity among the parts of

the SOA.

These problems identify additional requirements for SoA-based

applications that need to operate in TENs. A solution is needed to

better support SoA services in the face of limited bandwidth, high

and variable latencies, frequent link disruptions, and network

partitioning.

3. ENABLING THE REUSE OF SOA AND

COTS APPLICATIONS USING A

GATEWAY NETWORK PROXY
Communications middleware specifically designed for TENs

represent an appealing solution to effectively port SoA-based

applications and services to that operating environment [1]. In

fact, middleware solutions specifically designed to support

communications in extremely challenging networking

environments would provide applications with the right set of

functionalities, abstractions, and techniques to optimize the access

to and the utilization of network resources, and ultimately increase

performance. By relying on such a solution, service designers and

developers can focus their efforts on the business logic instead of

dealing with networking-related issues and challenges. This

promotes productivity and final software quality, and it also

reduces design, development, and maintenance costs [6].

While this approach is very interesting due to its effectiveness and

simplicity, it still requires all networked services and applications

to be modified before they can exploit any of the communications

middleware capabilities. In many cases, with legacy and COTS

software solutions, such modifications are not possible or, even

when technically feasible, would be prohibitively costly in terms

of time and money. For these reasons, it is essential to find an

effective way to bridge the gap between the communications

middleware and the existing applications.

A rather simple and effective solution involves inserting a

transparent QoS adaptation layer between the applications and

the communications middleware. This layer consists of a smart

component that is capable of remapping service requests and

applications’ communications to the right methods and concepts

provided by the middleware in a completely transparent manner.

This way, applications can have access to the optimizations and

the enriched networking features of the communications

middleware without the need for changes in their source code.

This is an approach we followed with success with ACM

NetProxy [4].

Nonetheless, the increasing presence of constrained devices in

TENs pose several challenges to this approach. The very low

resources available on many types of nodes in TENs often prevent

additional components (or even the communications middleware

itself) from running on those devices. Security and other tactical

policies might also hinder the installation of additional software

on some nodes, and the presence of multiple enterprises and

stakeholders that control the nodes further aggravates this

condition.

Instead, a more promising approach is a transparent QoS proxy

based on the deployment of the transparent QoS adaptation

component on a resource rich node operating as a gateway for

constrained devices. This approach addresses the challenges

described above by separating the location of applications from

that of the communications middleware and QoS optimization

components. More specifically, the transparent QoS proxy

approach avoids the emergence of policy-related problems that

would prevent the installation of additional components on the

nodes. Furthermore, it allows the middleware to be installed only

on nodes with sufficient computational and memory resources and

located at convenient points in the network or covering some

specific role in the TEN. For example, nodes that are central to the

network or in gateway positions would be better able to observe

the network traffic to infer the network state.

The transparent QoS proxy running on the gateway node

intercepts and processes all traffic generated by (typically

constrained) nodes within a portion of the network (labeled as

“Internal Network” (IN)) and forwards it to destinations with the

support of the communications middleware. The gateway node

effectively separates the nodes belonging to the IN from the rest

of the network, or “External Network” (EN), and hence it

becomes a gateway for the IN. We will refer to this node as

“gateway” or “proxy gateway”, interchangeably. As a

consequence, the network topology might affect the choice of the

node that will host the proxy.

Of course, it is essential to pay attention at deployment time: all

the nodes in the TEN that want to exploit the transparent QoS

enhancement features convey the traffic to and from their

communicating peers through the gateway node running the

transparent QoS proxy. However, most typical network

configurations often have a single gateway node that regulates

communications to and from network addresses that are locally

unreachable, and so this is usually not a problem. In any case, any

communications that do not go through the gateway node can still

proceed normally, but they will not take advantage of the QoS

improvements provided by NetProxy.

4. ACM NETPROXY
The ACM [1] is a communications middleware that provides

applications with a rich collection of capabilities to improve

network performance and resource utilization. The features of the

ACM include network monitoring, data transport, data

dissemination, resource and service discovery, transparent

network proxy, and network visualization. Many components of

the ACM, including NetProxy, are available on GitHub

(http://www.github.com/ihmc/nomads) as open source.

ACM NetProxy [3] [4] provides transparent integration between

networked applications and the ACM. The most relevant features

of NetProxy include QoS improvement and adaptation

mechanisms such as network protocol remapping, traffic

characterization, data compression, intelligent buffering, flow

prioritization, connection multiplexing, and packet consolidation.

Protocol remapping allows forwarding (part of) the traffic

generated by applications over other network protocols or other

components of the ACM, such as Mockets, DisService, and

DSPro, transparently. Network traffic characterization constantly

analyzes the volume of traffic in the network to provide the

decision making component of NetProxy with updated

information about what nodes and applications are generating

traffic, what types of data are being transmitted, the current

bandwidth consumption, and observed radio/link performance.

Thus, the QoS related decision making process in NetProxy is

both application- and network- aware.

Application-awareness allows NetProxy to choose the QoS

improvement techniques that best suit the data exchanged, e.g.,

preferring data-specific compression schemas over general

purpose compression algorithms, prioritizing the data produced by

most critical services or addressed to important nodes of the TEN,

or identifying traffic flows that would benefit from the delivery

semantics and the features of other ACM components. Similarly,

network-awareness guarantees that NetProxy can select the

network protocols and/or the components of the middleware that

better match the state and the characteristics of the network, in

terms of bandwidth availability, average latency, link reliability,

nodes’ mobility, etc.

ACM NetProxy is open source and was designed for easy

extensibility. These properties make it possible for users to simply

enhance the protocol remapping functionality of NetProxy with

support for other transport protocols or communications libraries,

such as the Stream Control Transmission Protocol (SCTP) [13]

and UDP-based Data Transfer (UDT) [14]. Additionally,

NetProxy supports two operational modes, namely Host Mode

(HM) and Gateway Mode (GM), which allows it to be used in

many different network configurations and satisfy various

requirements.

The objective of making NetProxy an extremely flexible solution

while maintaining complete application transparency underlies all

our design choices and motivated the development of many

features. By giving applications access to the features of the

middleware without requiring any changes to their source code,

NetProxy becomes the keystone to enable the reuse of SoA and

COTS components in TENs.

In order to provide its services to networked applications

transparently, ACM NetProxy intercepts and process all packets

they send over the network. This way, the proxy can acquire

knowledge on the traffic that the network will need to

accommodate, and exploit it to improve the decision making

process to a point that single applications, or even other

components of the middleware, would not be able to reach.

When packet interception occurs, NetProxy analyzes its content to

extract useful information, including the source and destination

IP:port pairs, the transport protocol used, other interesting fields

in the protocol header, e.g., flags or enabled options in the header

of TCP packets, and the type of data carried within the packet.

NetProxy can further enrich this information with the data

provided by other ACM components. For instance, Mockets has

both an active and passive measuring system that allows the ACM

component to learn about the characteristics of end-to-end

connections and equipped network interfaces. NetProxy can

leverage this feature of Mockets to acquire fundamental

information, e.g., the RTT of the connection to the tactical

operation center over the SATCOM interface.

Combining this knowledge together with the status of its internal

buffers and user-provided information, NetProxy can build an

accurate representation of the state of the network and the open

connections and use it to manage better the available resources

and respond to the QoS requirements of proxied traffic.

The configuration of the QoS module of NetProxy is currently

read from a file; a template is available to users, who can modify

it and specify several options to instruct NetProxy on how to

manipulate the traffic flowing through the proxy gateway and

enable QoS for specific data streams. Possible actions include

enabling/disabling data compression and choosing data-specific

compression algorithms, reducing the resolution of images and

video streams, consolidating multiple packets addressed to the

same destination, reserving a greater amount of bandwidth for

some connections (traffic flow prioritization), temporarily

disrupting connections when the available bandwidth goes below

a threshold, temporarily switching reliability in specific end-to-

end connections to partial reliability or best-effort, remapping

communications over different transport protocols, and changing

the information dissemination strategy for multicast and broadcast

communications.

Some types of traffic manipulation, such as packet consolidation,

protocol remapping, or data compression, require a second

instance of NetProxy to perform the inverse operations on the

other end of communications to preserve transparency. When this

happens, it is not necessary that the operational modes chosen for

the two instances of NetProxy are equal. Hence, the operational

mode can be chosen uniquely to satisfy other types of

requirement, such as those due to limited nodes’ capability,

network topology, or policies enforced by one or more tactical

entities, thereby keeping the flexibility of our solution high.

5. THE GATEWAY MODE OF ACM

NETPROXY
GM differs from HM in the way ACM NetProxy intercepts

packets and in the role that the node running the proxy needs to

assume in the network. In [3] we described in detail the design of

HM and its main requirements. To summarize briefly, HM

requires all nodes hosting components of a SoA or running pieces

of COTS software that need to benefit from the ACM to run a

copy of the NetProxy locally. To enable packet capturing before

packets are sent out over the network, HM also necessitates the

installation of a virtual network interface and to configure the

proxy properly on each node.

When configured to run in GM, NetProxy implements the

gateway network proxy solution described in section 3. Therefore,

to function properly in this operational mode, ACM NetProxy has

to run on nodes equipped with at least two network interfaces. The

proxy uses one of them, named “internal interface”, to intercept

all packets generated by nodes in the IN and addressed to nodes

that do not belong to the same subnetwork. The other interface,

labelled “external”, is used to send the captured traffic to remote

destinations after the NetProxy has processed it. Figure 1 shows a

TEN with two instances of NetProxy running in GM and two

running in HM. In this example, all connections and messages

generated by nodes belonging to the IN of some proxy gateway

have to go through a proxying node to communicate to nodes on

their EN.

Compared to HM, GM does not require the installation of virtual

network interfaces, nor does it need to run a copy of NetProxy on

each node that hosts SoA services or COTS applications.

Furthermore, GM reduces the amount of configuration required,

since there is only one instance for the entire sub-network, as

opposed to one for each node when in HM.

Another very important difference is that GM allows NetProxy to

build a comprehensive picture of the traffic that nodes in the IN

are generating, what services are being requested, and what kind

of data is being transferred. On the other hand, HM only allows

the proxy to learn about local services, thus limiting the efficiency

of the decision-making process. Moreover, it is often the case that

the external network interface (ENI) of gateway nodes in TENs is

different from the internal network interface (INI), thereby

providing links with very different characteristics and that usually

become bottlenecks in remote network communications. By

running NetProxy in GM and installing it on a gateway node, the

proxy can estimate the bandwidth capacity, the average latency,

and the reliability of these links more easily; this information is

extremely useful to further improve the quality of the decision-

making process.

Operations Center

SATCOM

MANET
GM

GM

HM

HM

Figure 1.Tactical Network Scenario with NetProxy

It is entirely possible to have the equivalent of NetProxy running

directly on a router or wireless network device. For example, in a

tactical networking scenario, a vehicle such as a Humvee could

have a local area network (LAN) to support users tethered to the

vehicle, which then connects to a wireless router / device that

provides the off-vehicle connectivity. NetProxy in GM would

either run between the LAN and the wireless device, or could be

directly integrated into the wireless device for complete

transparency.

When running in GM, ACM NetProxy uses libpcap

(http://www.tcpdump.org/) to sniff packets on both the internal

and the external network. To intercept and process network

packets transparently, ACM NetProxy first needs to implement a

customized version of the Address Resolution Protocol (ARP).

Figure 1 shows the physical configuration of a tactical network

where two nodes take on the role of proxy gateway and run

NetProxy (the other two nodes are running NetProxy in HM). At

the Operations Center (OC), NetProxy’s INI is connected to the

LAN and the ENI is connected to the SATCOM terminal.

Likewise, on the tactical vehicle, the INI is connected to the

MANET and the ENI is connected to the SATCOM terminal.

Consistent with the design principle of transparency, no nodes

attached to the vehicle MANET network or the OC LAN network

require changes in their configuration. Three different cases might

occur. The first case is very simple, and it refers to two nodes in

the IN or in the EN that needs to communicate. In such a

situation, the proxy gateway node will not partake in the ARP

address resolution, but NetProxy will still cache the

hardware/protocol addresses pair of the two nodes involved in the

communication. This is possible thanks to libpcap, which allows

the sniffing of packets regardless of their destination. Note that

NetProxy maintains an associative array of hardware/IP address

pairs, with the IP address as key, which is updated any time new

ARP packets are sniffed. This also allows NetProxy to learn and

keep track of which nodes belong to the IN, and which ones

belong to the EN.

The second case involves a node in the IN that wants to

communicate with a node in the EN, or vice versa. When either

happens, NetProxy intercepts the ARP request, changes the source

hardware address (SHA) of the requester with that of the ENI of

the proxy gateway, and finally forwards the modified packet on

the other network interface. Similarly, NetProxy will change the

SHA of the corresponding ARP response before forwarding it

back on the first network interface. After address resolution is

resolved, data exchange can begin. NetProxy will forward packets

from one network interface to the other if and only if two

conditions are met: (1) the MAC destination address in the

packets’ header is that of the ENI; and (2) the IP destination

address is that of some node in the other subnetwork. The reason

we chose to modify the SHA field in ARP packets is twofold: for

clarity’s sake, as it makes it straightforward to identify packets

that need to be forwarded from one subnetwork to the other, and

for consistency with the third case.

The last case, and also the most interesting one, concerns a node

(we will also refer to it as “source”) in the IN that needs to send

data to a remote host (also, “destination”). If ACM NetProxy is

configured to remap the traffic between those two endpoints, then

it is necessary that either the destination node runs an instance of

ACM NetProxy in HM, or it is located behind another proxy

gateway running NetProxy in GM. For the purposes of this paper,

we will only consider this latter case. Before data exchange

begins, the source will generate an ARP request to which

NetProxy will reply to inform that the target IP address is

reachable through the ENI of the proxy gateway. On the

destination’s side, the remote NetProxy instance will generate an

ARP request to obtain the MAC address of the destination node.

Once the address is resolved, the end-to-end communication can

proceed and the nodes involved can take advantage of the features

of NetProxy and of the ACM, in accordance with the configured

options. Note that, in case NetProxy is not configured to remap or

process the traffic between a node in the IN and some target

remote node, the proxy will forward packets to the network

gateway, which will take care of their delivery. This allows

complete transparency from the point of view of the applications.

ACM NetProxy running in GM requires the assignment of an IP

address only to the ENI and it will make use only of the MAC

address of that interface when sending ARP packets. We made

this design choice in order to reduce the consumption of IP

addresses, which might be a limited resource in some complex

network configurations, especially when many different parties

are involved.

6. EXPERIMENTAL RESULTS
We experimentally evaluated the impact of ACM NetProxy in a

reference scenario based on Agile Bloodhound, an annual

technology demonstration event held by the US Department of

Defense (DoD) Office of Naval Research (ONR)

(http://www.onr.navy.mil/Media-Center/Press-

Releases/2014/Agile-Bloodhound-ISR-C2-Logistics.aspx). The

rationale is to simulate typical operations involving multiple

information flows with different characteristics in terms of both

the type and the amount of data transferred. Among them, the

most relevant flows consist of friendly (blue) and enemy (red)

force tracks, sensor reports (audio, images, and/or video feeds),

documents (intelligence reports and logistics reports), and chat

messages.

In the experiment, several military hub vehicles are connected to

the Operations Center (OC) using SATCOM communications

links. The purpose of each hub vehicle is to support and provide

connectivity to a number of dismounted soldiers, who move either

on foot or in vehicles of their own, and use their devices to set up

a MANET for communications. The movements of soldiers and

vehicles during the event reproduced the patterns of a realistic

tactical mission. An instance of ACM NetProxy was running in

GM on a node in the network of the OC where it was able to

intercept all traffic to and from the SATCOM link. Similarly, all

deployed hub vehicles had network gateway machines on which

NetProxy was installed and configured to run in GM. This way,

all traffic had to go through one of the NetProxy instances before

being transmitted over the SATCOM links in any direction.

We configured all NetProxy instances to remap outgoing

transmissions, both UDP and TCP, over a reliable Mockets

connection open on the SATCOM link. We then enabled the QoS

options for data compression with all streams (we used the Zlib

library, an open source lossless compression algorithm available

online at http://www.zlib.net), and packet consolidation for all

UDP messages addressed to the same destination. Note that

NetProxy always performs buffering of the traffic on the IN and

sends buffered data out on the EN in accordance with the

configured prioritization settings. Since no flow prioritization was

configured for this experiment, by default NetProxy tries to

achieve flow fairness by equally sharing the bandwidth available

on the ENI, as measured by Mockets.

Table 1. Mean, standard deviation, and maximum value of

bytes and packets sent over the network in each 0.1s interval

before and after traffic was processed by the NetProxy

Generated Traffic (Bytes) Packets sent

Mean Std. Dev. Max Mean Std. Dev. Max

Before 5269.3 15510.9 192656 6.41 22.93 312

After 3656.8 5168.0 15777 3.66 4.79 39

Given the very large amount of data collected during the

experiment, this section only presents the analysis of one of the

most significant portion of traffic: the one containing red and blue

tracks and sensor reports flowing from the OC to one of the hub

vehicle nodes (which served all the handhelds devices in the

MANET). However, all instances of ACM NetProxy were

configured to perform the same operations on the data, whose

type and magnitude were comparable across the different teams

deployed in the scenario. Therefore, we can state that the narrower

focus of our restricted analysis does not affect the purpose of this

discussion significantly.

For our analysis, we divided the whole duration of the experiment

in time intervals of 0.1 seconds and allocated each network event

in its corresponding slot. Table 1 presents a statistical summary of

collected measurements. It compares the generated traffic (in

bytes) and the number of packets sent before and after the traffic

was processed by NetProxy. Reported statistics include arithmetic

mean, standard deviation, and maximum number of bytes and

packets sent over the network in a single interval. The traffic after

going through NetProxy is substantially less than the amount

generated by the nodes in the IN. Looking at the mean, the effects

of data compression and packets consolidation are evident, and

show a reduction of 30.6 percent in the average number of

generated bytes and of 42.9 percent in the average number of

packets sent. Finally, the standard deviation also appears

significantly lower after the network traffic has gone through

NetProxy. This result entails a less bursty and smoother network

activity on the EN compared to the activity on the IN, as figures

3a and 3b below depict better.

Reducing burstiness is essential to enable NetProxy to provision

the required QoS. First of all, it avoids many packets being lost on

the bottlenecked links due to sudden peaks in the network activity

in absence of congestion control. An example would be

applications that rely on UDP to transfer data because reliable

and/or ordered delivery of messages is not necessary. Smoother

data flows also imply a wiser use of the bandwidth on the

bottlenecked links because it cuts the frequency of peaks in

network activity followed by periods with very low traffic, during

which the available bandwidth would be wasted. Finally, keeping

burstiness under control reduces the end-to-end jitter experienced

by applications, a very important consequence for all classes of

real-time applications.

Figures 2a and 2b show in more detail the effects of data

compression and packet consolidation in ACM NetProxy. The

figures present the data collected during one of the busiest time

windows of the demonstration, which spans from 500 to 800

seconds after the beginning of the experiment and includes

significant levels of network activity. Figure 2a represents, with

light gray bars, the traffic (in KiB) flowing in the IN, and with a

dark gray color the traffic sent over the EN by NetProxy.

Similarly, Figure 2b highlights the difference between the number

of packets flowing in the IN and the EN before and after NetProxy

processed the traffic. The graphs show that NetProxy significantly

reduces bandwidth consumption by sending less data out on the

EN and generating less packets, which in turn also increases

efficiency, especially with radios that are packet rate limited or

when packet transmission is preceded by a channel access

negotiation phase, such as with wireless network interfaces that

implement the IEEE 802.11 specifications and standards [19].

Figures 3a and 3b depict the empirical density distribution of the

number of bytes and packets, respectively, which were sent over

the internal and external networks in each of the 0.1s long

intervals in which we partitioned the experiment. The figures

show how the buffering strategy implemented in NetProxy is

capable of making traffic usage patterns much smoother and more

regular, compared to the burstiness that would normally

characterize them. This allows for an easier accommodation of the

network traffic and leads to more predictable performance. We

chose to limit the data reported on the X axis of the two graphs to

20 KiB and 20 packets, respectively, to better show the

differences in shape between the two density distributions. In

Figure 3a, very sharp peaks (representing the data measured in the

IN) stand out against a smooth curve (that represents the data

sampled in the EN). Similarly, Figure 3b shows that the density

distribution of the number of packets in the EN during each

interval has much gentler slopes than that describing the

conditions in the IN in the same intervals. Finally, we note that the

tail of the curves marked as “Before” would reach almost 200 KiB

in Figure 3a, and go beyond 300 packets in Figure 3b. We chose

not to represent all data because it would have resulted in almost

unintelligible graphs.

7. RELATED WORK
The literature recognizes the efficacy of middleware-based

approaches for the resource management in TENs. Both [6] and

[7] focus their effort on optimizing the allocation of resources

between competing applications and nodes in the network. More

specifically, the authors of [7] propose a middleware that is

capable of dynamically tuning the network’s configuration and

QoS to meet the applications’ requirements under the constraints

dictated by the current network conditions. Our solution, instead,

focuses on providing QoS enhancements to applications

transparently and remapping their communications over other

components of the middleware in order to increase efficiency and

reduce the impact on the network resources.

The authors of [8] also propose a transparent network proxy,

which aims at increasing the performance of TCP by

implementing advanced buffer and packet management solutions

in wireless environments. The Space Communications Protocol

Specification - Transport Protocol (SCPS-TP) (available on the

Web at http://openchannelsoftware.com/projects/SCPS) is another

transparent network proxy that enhances TCP and UDP for use in

spacecraft communications environments. Our approach goes

beyond these solutions, which focus only on improving TCP for

use under specific conditions, as it exploits a comprehensive

communications middleware that provides the delivery semantics

and communication paradigms that best fit applications’ needs.

Other proposals, such as I-TCP [9], Mobile-TCP [10], and the

Remote Sockets Architecture [11], represent proxy-based

solutions that aim to improve TCP in wireless networks.

Differently from our proposal, these systems are not transparent to

applications and do not provide any specific QoS features to meet

applications’ requirements, but they simply focus on increasing

the throughput of TCP in wireless networks and its resilience to

mobility.

Figure 2. Difference in the number of a) bytes, and b) packets, sent over the network before and after traffic was processed by the

NetProxy

Figure 3. Density distribution of a) the number of bytes (plot limited to 20 KiB), and b) the number of packets (plot limited to 20

packets) before and after traffic was processed by the NetProxy

The ACM NetProxy can be classified as a splitting distributed

Performance Enhancing Proxy (PEP) [12]. PEPs exist both as

hardware and software solutions, and mostly focus on resolving

specific issues that TCP exhibits over particular media or network

configurations, such as wireless, satellite, or high bandwidth-delay

product links. Unlike them, the NetProxy supports other protocols

besides TCP and it adapts to a variety of networks. Moreover,

NetProxy can be configured to provide a variety of QoS

enhancements to specific data streams and communications.

Several works in the literature focus on systems and techniques to

provision QoS to applications in TENs and MANETs. Hauge et

al. study the issues of providing QoS in heterogeneous tactical

networks and present two QoS-aware network architectures for

inter- and intra- domain networks, respectively [15]. However, the

paper does not present any experimental evaluation of the

proposed solution, and the authors claim that the interactions

between the two architectures needs further study. Authors of [16]

propose a QoS routing system for MANETs based on the

assumption that all nodes can take part in the routing process and

that they are equipped with one or more network interfaces

capable of operating at one of many independent channels. The

paper then focuses only on the problems of clustering and channel

allocation.

Kim et al. present a QoS framework for tactical networks based

on commercial technologies like DiffServ and SNMP [17]. The

framework assumes a hierarchical network architecture with

leader nodes that enable communications between one layer of the

hierarchy and the one above. These types of network architecture

and nodes organization are essential to permit nodes to negotiate

their QoS levels within the layers. The paper concludes presenting

the results of a simple experimental evaluation, performed using a

setup composed of only three static nodes.

In [18], the authors propose QAM, a QoS-aware middleware for

communications in tactical environments. To the best of our

knowledge, this work shows the highest number of similarities

with the ACM. QAM includes components that provide tunable

end-to-end connections, point-to-multipoint communications,

quality adjustment and admission control features based on

measurements of channels and open links, and a transparent proxy

component for legacy applications. Nonetheless, the legacy proxy

does not interface legacy applications with all components of

QAM, but only with the admission control component. In

addition, important features such as data compression and packets

consolidation seem to be missing, and the QoS level provided by

QAM is based on classes, so it cannot be independently

configured for each flow.

8. CONCLUSIONS AND FUTURE WORK
ACM NetProxy GM function bridges the gap between services

and applications and the Agile Computing Middleware, a

communications middleware specifically designed to support

communications in extremely challenged networking

environments, such as TENs. As shown by experimental results

obtained during a test in a field demonstration event, GM enables

multiple nodes in subnetworks to benefit from NetProxy and the

ACM. This is particularly useful to support handheld devices,

embedded devices, and other resource-constrained devices that

cannot directly run NetProxy in HM. It will be very interesting to

investigate the impact of node mobility, with a particular focus on

gateway nodes, on the efficacy of NetProxy to provide QoS to the

nodes in the internal network. Other work will aim to increase the

intelligence of the decision-making process in ACM NetProxy to

enable dynamic adaptation of policies in place. Finally, we will

focus further on network state estimation and reprioritization of

resource allocation based on the current mission and/or node

objectives.

9. ACKNOWLEDGMENTS
This effort was funded in part by the grant of 5‰ to the

University of Ferrara - income tax return for 2011, and by the

grant for student mobility offered by IUSS - Ferrara 1391.

10. REFERENCES
[1] N. Suri, E. Benvegnu, M. Tortonesi, C. Stefanelli, J. Kovach,

J. Hanna, "Communications middleware for tactical

environments: Observations, experiences, and lessons

learned", IEEE Communications Magazine, Vol. 47, No. 10,

pp. 56-63, October 2009.

[2] X. Chen , H. Zhai , J. Wang , Y. Fang, “TCP Performance

over Mobile Ad hoc Networks”, Canadian Journal of

Electrical and Computer Engineering, Vol. 29, Issue 1/2, pp.

129-134, Jan-Apr 2004.

[3] A. Morelli, R. Kohler, C. Stefanelli, N. Suri, M. Tortonesi,

"Supporting COTS applications in Tactical Edge Networks,"

IEEE Military Communications Conference, 2012 -

MILCOM 2012 , pp. 1-7, Oct. 29 2012-Nov. 1 2012.

[4] M. Tortonesi, A. Morelli, C. Stefanelli, R. Kohler, N. Suri, S.

Watson, "Enabling the deployment of COTS applications in

tactical edge networks," IEEE Communications Magazine,

Vol. 51, No. 10, pp. 66-73, October 2013.

[5] S.T. Zhu, R.W. Wong, C.A. McDonough, R.R. Roy, J.M.

Fine, J.P. Reiling, “Army Enterprise Architecture Technical

Reference Model for System Interoperability”, IEEE Military

Communications Conference, 2009 - MILCOM 2009, pp. 1-

6, 18-21 Oct. 2009.

[6] A. Poylisher, F. Sultan, A. Ghosh, Shi-wei Li, C.J. Chiang,

R. Chadha, K. Moeltner, K. Jakubowski, "QAM: A

comprehensive QoS-aware Middleware suite for tactical

communications", IEEE Military Communications

Conference, 2011 - MILCOM 2011, pp.1586-1591, 7-10

Nov. 2011.

[7] A.S. Peng, D.M. Moen, Tian He; D.J. Lilja, "Automatic

Dynamic Resource Management architecture in tactical

network environments", IEEE Military Communications

Conference, 2009 - MILCOM 2009, pp. 1-7, 18-21 Oct.

2009.

[8] Z. Zhuang, T.-Y. Chang, R. Sivakumar, and A. Velayutham,

"Application-Aware Acceleration for Wireless Data

Networks: Design Elements and Prototype Implementation",

IEEE Transactions on Mobile Computing, vol. 8, no. 9,

September 2009.

[9] A. Bakre, B. Badrinath, “I-TCP: Indirect TCP for Mobile

Hosts”, in Proceedings of 15th IEEE International

Conference on Distributed Computing Systems (ICDCS '95).

[10] Z. Haas, “Mobile-TCP: An Asymmetric Transport Protocol

Design for Mobile Systems”, in Proceedings of 3rd

International Workshop on Mobile Multimedia

Communications (IWMM’95).

[11] M. Schlager, B. Rathke, S. Bodenstein, A. Wolisz,

“Advocating a Remote Socket Architecture for Internet

Access Using Wireless LANs”, Mobile Networks and

Applications, Vol. 6, N. 1, pp. 23-42, Jan./Feb. 2001.

[12] J. Border, M. Kojo, J. Griner, G. Montenegro, Z. Shelby,

“Performance Enhancing Proxies Intended to Mitigate Link-

Related Degradations”, RFC 3135, June 2001.

[13] Ł. Budzisz, J. Garcia, A. Brunstrom, R. Ferrús. “A taxonomy

and survey of SCTP research”, ACM Computing Survey,

Vol. 44, No. 4, Article 18, pp. 18:1-18:36, September 2012.

[14] Y. Gu and R.L. Grossman, UDT: UDP-based Data Transfer

for High-Speed Wide Area Networks, Computer Networks

(Elsevier), Vol. 51, No. 7, May 2007.

[15] M. Hauge, L. Landmark, P. Lubkowski, M. Amanowicz, K.

Maslanka, “Selected Issues of QoS Provision in

Heterogenous Military Networks”, International Journal of

Electronics and Communications, Vol. 60, No. 1, 2014.

[16] A. Dimakis, L. He, J. Musacchio, H. Wilson So, T. Tung,

and J. Walrand, "Adaptive Quality of Service for a Mobile

Ad Hoc Network", IEEE International Conference on Mobile

and Wireless Communication Networks (MWCN), October

2003.

[17] B. C. Kim, Y. Bang, Y. Kim, J. Y. Lee, D. G. Kwak; J. Y.

Lee; J. S. Ma, "A QOS framework design based on DiffServ

and SNMP for tactical networks," IEEE Military

Communications Conference 2008 - MILCOM 2008, pp. 1-

7, 16-19 November 2008.

[18] A. Poylisher, F. Sultan, A. Ghosh, S. Li; C.J. Chiang, R.

Chadha, K. Moeltner, K. Jakubowski, "QAM: a

Comprehensive QoS-aware Middleware Suite for Tactical

Communications," IEEE Military Communications

Conference 2011 - MILCOM 2011, pp. 1586-1591, 7-10

Nov. 2011

[19] IEEE Standard for Information technology -

Telecommunications and information exchange between

systems Local and metropolitan area networks - Specific

requirements Part 11: Wireless LAN Medium Access

Control (MAC) and Physical Layer (PHY) Specifications,

http://standards.ieee.org/getieee802/download/802.11-

2012.pdf

[20] L. Pelusi, A. Passarella, M. Conti, “Opportunistic

networking: data forwarding in disconnected mobile ad hoc

networks”, IEEE Communications Magazine, Vol. 44, No.

11, pp. 134-141, November 2006.

