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Abstract—Service-oriented architectures (SoAs) are a popular 
paradigm for enterprise and data center computing but normally 
do not perform well on tactical networks, which are often 
degraded in terms of bandwidth, reliability, latency, and 
connectivity. This paper presents the agile computing 
middleware and in particular a transparent network proxy and 
associated protocols that help address the impedance mismatch 
that occurs between SoAs and tactical and DIL (Disconnected, 
Intermittent, and Limited) networks. 
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I. INTRODUCTION 
Service-oriented architectures (SoAs) have evolved into a 

popular approach that supports rapid integration of multiple 
software components. SoAs provide well-defined interfaces 
and protocols to access their capabilities and hence offer many 
advantages including service reusability, composability using 
workflows, and rapid configuration and reconfiguration. 
Traditionally, SoAs have been deployed in enterprise and data 
center networks that are well connected with few constraints on 
bandwidth, latency, reliability, and availability. The popularity 
and success of SoAs in the enterprise environment has argued 
for their adoption in tactical network environments. However, 
tactical networks are typically wireless networks with little or 
no fixed infrastructure and are intermittently connected, 
bandwidth constrained, unreliable, and exhibit high and 
variable latencies. Tactical networks, as well as other 
Disconnected, Intermittent, and Limited (DIL) networks 
present many problems to the application and deployment of 
SoAs because SoAs were developed primarily for enterprise 
networks. SoAs typically use connection-oriented transport 
protocols such as TCP and encode messages in verbose, 
bandwidth intensive formats such as SOAP and XML. 
Additionally, TCP itself does not perform well on Tactical and 
DIL networks, further impacting the performance of SoAs. A 
detailed discussion of the network challenges and the 
requirements for SoAs to function effectively in tactical 
networks is discussed in [1]. 

This paper describes components of the agile computing 
middleware (ACM) that supports SoAs on tactical and DIL 
networks. The middleware addresses five primary challenges – 
resource and service discovery, transport protocols, 
disconnection support, resource allocation and coordination, 
and finally a transparent network proxy that helps to integrate 
legacy applications and systems. Given space limitations, this 

paper will focus primarily on the network proxy (NetProxy), 
which improves performance of legacy SoAs. Since NetProxy 
relies on other components in the middleware that provide 
transport services and disconnection support, those components 
are also briefly described. The experimental results presented 
in the evaluation section towards the end of the paper only 
focus on NetProxy. 

II. MIDDLEWARE OVERVIEW 
The agile computing middleware (ACM) has been 

motivated by the challenges posed by tactical and DIL 
networks and provides a comprehensive set of capabilities 
including network monitoring, data transport, data 
dissemination, resource and service discovery, transparent 
network proxy, and network visualization. Figure 1 shows the 
key components with a very short label identifying the 
purpose of each component. The components of this 
middleware have been primarily developed using C++ and 
ported to Linux, Win32, and in some cases, the Android 
environment. Wrappers are available for applications that are 
written in Java and C#. Furthermore, many of these 
components are available as open source under the GPLv3 
license and currently hosted on GitHub [2]. The following 
sections describe Mockets, DisService, and the ACM 
NetProxy in more detail. Other components relevant to SoAs 
in tactical networks include the Group Manager component, 
which provides discovery services [3], and AgServe, which 
realizes a dynamic SoA with service migration [4]. 
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Figure 1: Components of the Agile Computing Middleware 

III. MOCKETS 
Mockets (for mobile sockets) is a transport protocol 

designed to replace TCP and UDP and targeted for DIL 
networks. Mockets itself can operate over UDP for IP 
networks, and can also operate over non-IP networks using 
packet adaptors. Mockets replaces the TCP congestion control 



and reliable transmission algorithms with alternate, custom 
implementations that are designed for DIL networks. 
Numerous configurable options allow mockets to be easily 
adapted to a variety of network links and radios. Unlike TCP, 
mockets provides a message-oriented interface, which allows 
Mockets to distinguish between messages. Being able to 
identify message boundaries and messages allows Mockets to 
treat individual messages differently, which is not possible 
with a byte stream oriented model such as TCP. Mockets 
provides four different classes of service, which allows 
applications to choose options for reliability and sequencing 
for each message that they transmit. TCP only provides the 
equivalent of reliable and sequenced, which is the most 
expensive choice in terms of bandwidth and latency. 
Experience has shown that applications rarely need these 
semantics – but use them because those are the semantics 
provided by TCP. Many times, applications need sequencing 
but not reliability (e.g., audio or video streaming) and many 
times they need reliability but not sequencing. 

Other relevant capabilities provided by mockets include 
prioritization of messages, policy-based enforcement of 
bandwidth constraints, and message replacement. The last 
capability allows an application to flush and replace old 
messages with newer versions. Message replacement is 
particularly useful when applications generated repeated 
messages (e.g., status update messages). With TCP, these 
messages get enqueued when the network link goes down. 
Since TCP provides no feedback to the application, the 
application would continue to generate these periodic 
messages, which continue to get enqueued. When the network 
link is restored or is available again, all of these old messages 
would be sent unnecessarily. On the other hand, with Mockets, 
the application can assign a tag for each type of message, and 
then request that a new update replace previous messages with 
the same tag. That results in the most recent message being 
sent out when a connection is restored, which both reduces 
bandwidth utilization as well as the latency in message 
delivery. Experimental results that show the benefits of 
message replacement are provided in [5]. 

Another important capability offered by mockets is the 
ability to dynamically rebind an endpoint of an open 
connection in a manner that is transparent to the application. 
For example, if a node switches networks and as a 
consequence switches IP addresses, mockets could 
transparently rebind to the new IP address without any 
interruption of connection from the perspective of the 
applications. Unlike Mobile IP [6], mockets does not need a 
home node to forward traffic. 

Finally, mockets exports detailed statistics about the status 
of the network link, including queue sizes, reliability, 
throughput, and latency. All of these statistics can be utilized 
by other middleware layers or the application to adjust their 
behavior based on the performance of the underlying network. 
This is in contrast with TCP, which traditionally tries to 
isolate the application from the behavior of the underlying 
network. 

For the purposes of Service-oriented Computing over DIL 
networks, mockets has been integrated into NetProxy, which 
allows existing COTS applications to benefit from the 
performance improvements offered by Mockets. NetProxy is 
further described in section V. 

IV. DISSERVICE 
DisService is a peer-to-peer disruption tolerant 

dissemination service that provides many fundamental 
capabilities for DIL environments. DisService supports store 
and forward delivery of data and caches data wherever 
possible in the network, thereby making it disruption tolerant 
and improving availability of data. The opportunistic listening 
capability of DisService, described by patent [7], is of 
particular relevance to vehicular networks, as it addresses 
challenges such as temporary loss of connectivity due to 
tunnels and other “urban canyons.” DisService also supports 
the notion of hierarchical groups to organize the information 
being disseminated and to be efficient about delivery of 
information. Subscriptions allow clients to express interest in 
particular groups. Information is published in the context of a 
group and is delivered to other nodes where applications have 
subscribed to those groups. DisService, like mockets, provides 
a variety of classes of services. The one major difference is 
that mockets is a point-to-point communication protocol (like 
TCP) whereas DisService is a point-to-multipoint 
communication protocol. Therefore, there could be many 
receivers for messages that are transmitted by one node. With 
DisService, the class of service is specified by the subscriber 
(the receiver) for each group. For each group, a subscriber 
may specify whether sequencing is desired, whether messages 
should be reliable, and whether missing messages should be 
requested. Unlike mockets, which uses a Selective 
Acknowledgement (SAck) mechanism for reliability, 
DisService uses a Negative Acknowledgement (NAck) 
mechanism for reliability. Therefore, it is up to each receiver 
to determine, based on the class of service desired, whether to 
request for missing pieces (fragments) of a message that has 
been published (and whether to request complete messages 
that might have been missed in their entirety). 

The disruption tolerance capability of DisService provides 
a particularly useful foundation for Service-oriented 
architectures. Each service invocation may be embodied inside 
a DisService message that is pushed by the client to the node 
hosting the service to be invoked. No end-to-end connectivity 
is required in this scenario for the service request message to 
reach the provider node. When the message is received, 
middleware on the provider node extracts the service 
invocation parameters from the message and invokes the 
service accordingly. When the result is obtained, it is in turn 
embodied in a new message and pushed by the provider node 
back to the client node. Figure 2 shows a typical scenario for 
service invocation via DisService, where the invocation 
request and the reply may be forwarded through any number 
of intermediate nodes (also running DisService). Workflows 
can be realized using an extension of the same mechanism, 



where intermediate results are embedded into messages and 
pushed between the nodes using DisService. 
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Figure 2: Service Invocation over Disrupted Links with 

DisService 

V. NETPROXY 
The ACM NetProxy is the component responsible for 

providing transparent integration between SoA systems and 
the middleware. Among its many features, the most notable 
include network protocol remapping, connection multiplexing, 
data compression, intelligent buffering, flow prioritization, 
and packets consolidation. The support for protocol remapping 
in NetProxy plays a particularly important role, as it allows 
forwarding (part of) the traffic generated by SoA applications 
over Mockets and DisService transparently. This is a key step 
towards enabling the reuse of SoA components in DIL 
networks, because it gives applications access to the features 
of ACM without making any changes to their source code. In 
addition, NetProxy supports two operational modes to fit 
better into different network configurations and to meet 
various user requirements. 

NetProxy works by intercepting packets generated by the 
applications before they are sent over the network. This gives 
NetProxy full control of all the different traffic flows going 
through it, without the need to change any network 
configuration or any parameter of the proxied 
nodes/applications. After their interception, NetProxy 
proceeds by analyzing those packets to extract useful pieces of 
information (source and/or destination IP address, transport 
protocol used, type of application/service, etc.). Other ACM 
components can provide further data, e.g. Mockets statistics 
can give an insight on the current network status, available 
bandwidth, and measured latency, which will enrich and 
complement the information extracted from the intercepted 
packets. Based on all of this information, on the status of the 
internal buffers, and on the configuration options specified, 
the decision making building block of the NetProxy will take 
the most appropriate actions to satisfy applications’ 
requirements under the constraints imposed by the available 
network resources. If NetProxy is configured to perform any 
type of protocol remapping, a second instance on the other end 
of the communication is necessary to apply the inverse 
remapping. This ensures complete application transparency, it 
avoids any compatibility issue, and it removes any 
dependency from other ACM components. The operational 
modes chosen for the two instances do not have to match. 

Supported operational modes, Host Mode (HM) and 
Gateway Mode (GM), differ in the way they intercept the 

traffic and in the role that the NetProxy assumes in the 
network. When operating in HM, as shown in Figure 3, a copy 
of the NetProxy is installed on any nodes that run SoA 
applications in need of proxy support. It follows that multiple 
instances might be running on different nodes of the network. 
This mode also requires the installation of a virtual network 
interface on those nodes, so that applications’ packets cannot 
reach the real network unless they go through the NetProxy. 
Conversely, when running in GM as shown in Figure 4, the 
NetProxy assumes it is installed on a single node of the 
network equipped with two network interfaces (labeled 
“internal” and “external”), from which it can proxy all the 
traffic coming in and going out from the network. 

The two modes have different advantages and liabilities. 
HM simply requires the installation of a piece of software on 
every node that runs applications needing to be proxied; 
however, each instance of the ACM component will only have 
a local view of the traffic and of the network conditions. On 
the other hand, GM requires NetProxy to be installed on a 
gateway node of the local network, which might not be 
possible because of the network architecture or authorization 
issues. However, running NetProxy on a gateway node is 
preferred in terms of having the best possible view of the 
traffic generated and the network status. 

It is entirely possible to have the equivalent of the 
NetProxy running on a router or wireless network device of 
some sort. For example, in a vehicular networking scenario, it 
is envisioned that the vehicle has a local area network (LAN), 
which then connects to a wireless router / device that provides 
the off-vehicle connectivity. The NetProxy in GM would 
either run between the LAN and the wireless device, or could 
be directly integrated into the wireless device for complete 
transparency. 

 

 
Figure 3: NetProxy Running in Host Mode 



 

 
Figure 4: NetProxy Running in Gateway Mode 

VI. EXPERIMENTAL RESULTS 
This section presents the results collected during two 

different experiments involving the NetProxy and other 
associated protocols. The first experiment is designed to 
reproduce the issues that SoA applications face when running 
in tactical networks and several tests were run in an emulated 
environment to collect the necessary data from it. The results 
of the second experiment, instead, come from a recent 
technical evaluation event: data represents a real use case and 
they were collected directly in the field, during the event. 

For our first experiment, we used an enhanced version of 
the Mobile Ad-hoc Network Emulator (MANE) [8], a tool 
designed to reproduce the characteristics of unreliable 
environments such as tactical networks, to set up the 
connectivity between the two nodes involved in the first 
experiment. Those nodes are part of the NOMADS testbed, 
which comprises 96 HP DL140 servers (Dual Xeon Dual Core 
CPUs at 3.06Ghz, with 4GB of RAM each) connected via a 
100Mbps Ethernet LAN. MANE can manage bandwidth, 
latency, and reliability for both directions of each link, and 
thus it permits evaluating different systems and configurations 
in a reproducible, laboratory controlled environment. The 
reliability parameter in MANE is a complementary measure of 
the Packet Error Rate (PER): for instance, 90% reliability is 
equal to a PER of 10%. 

For the purposes of testing the performance of NetProxy, 
we had a client application on one node of the testbed generate 
an HTTP SOAP request, send it to a Web Server located on a 
second node, and finally wait for the response. To emulate 
different conditions of a tactical scenario, we kept the link 
bandwidth set to 1 Mbps in both directions while we ran 
several tests changing the reliability parameter: we used the 
values 87%, 90%, 93%, and 95%. The client application 
repeated each request 50 times under the same link conditions 

before we input the next reliability value in MANE. The 
whole experiment was repeated four times, changing the way 
client and server connected to each other: using TCP, using 
NetProxy to remap TCP over Mockets (we will refer to this 
configuration as “NP + Mockets” in the remainder of the 
paper), using NP + Mockets and enabling the lzma 
compression feature in NetProxy (NP + Mockets – LZMA), 
and finally using NP + Mockets and the zlib compression (NP 
+ Mockets – ZLIB). Both instances of NetProxy were running 
in Host Mode. 

Figure 3 shows the results of the experiment described 
above. TCP shows the lowest throughput and remapping it 
over Mockets through NetProxy already produces a significant 
improvement in performance. Several reasons contribute to 
this result. First of all, Mockets handles packet loss much 
better than TCP, which attributes it entirely to network 
congestion thereby triggering congestion control when not 
necessary. Moreover, NetProxy multiplexes all the traffic 
directed to a single node onto the same connection, which 
keeps it open for consecutive requests that may come from 
various applications; on the contrary, single applications 
usually don’t keep their TCP connections open once a request 
has been served, which means that every new request has TCP 
to go through its slow-start phase. Part of the improvement is 
also due to the intelligent buffering of NetProxy combined 
with Mockets, which results in packets with larger payloads, 
thereby reducing the protocol overhead. 

However, enabling compression allowed us to achieve a 
much higher gain in the measured throughput. In fact, the 
verbosity of the HTTP and SOAP protocols permits 
compression algorithms to work very efficiently, sensibly 
reducing the amount of data that needs to be transferred. 
Despite the better compression ratio of the lzma algorithm 
compared to zlib, NP + Mockets – ZLIB showed the highest 
throughput. This result is due to the greater computational 
resources required by the lzma algorithm, at which point the 
computational time spent in compression exceeds the gains 
achieved in the network transmission time due to the slightly 
improved compression ratios. 

 

 
Figure 5: Performance Results of Service Invocation with 

NetProxy 

The second experiment consisted of a practical 
demonstration in the field. Four networks were involved in the 



experiment, namely networks NetA through NetD, and only 
NetA shared a satellite link to every other network. Therefore, 
direct connections between any of the networks from NetB 
through NetD were not possible, and so all communications 
between nodes in two of those networks had to go through 
NetA. All satellite links have a latency of 2 seconds, hence an 
RTT of 4 seconds, and a bandwidth of 32KBps (256 Kbps). 

NetProxy operating in Gateway Mode was installed on a 
dedicated Ubuntu 14.04 64-bit Linux machine in each of the 
four networks, and all incoming and outgoing traffic had to go 
through those nodes. This conferred on NetProxy complete 
observability of and control over the amount of traffic 
generated within the network and of the status of the satellite 
link. Tcpdump (http://www.tcpdump.org/) was used to capture 
all packets on both the internal and external network interfaces 
of the machines running NetProxy. 

Due to space limitations, only a subset of the results are 
presented. Two graphs show the effects of NetProxy on the 
number of packets generated and on the bandwidth usage, 
filtering out all traffic but that going from NetA to NetB. 
Statistical analysis of the other connections, in both directions, 
showed very similar results. On the X axis of the graphs is the 
time in seconds. Due to the long duration of the experiment 
(several hours) and the consequent overwhelming amount of 
data collected, only a small subset was selected for detailed 
presentation. This particular data sample is about 80 seconds 
long and starts at 680s after the beginning of the experiment. 

Figure 6 shows the number of packets sent every second 
by nodes of NetA to nodes of NetB (in red) against the 
number of packets actually generated every second by the 
NetProxy in NetA and transmitted over the satellite link to the 
NetProxy in NetB (in black). As can be seen clearly, the red 
bars are always significantly taller than the black ones, 
indicating a much lower resource consumption when using 
NetProxy. Actual packet counts indicated an improvement of 
1.77x (in terms of reduction of the number of packets). Figure 
7 shows a similar comparison – but measuring the bandwidth 
utilization (the unit of measurement is in bytes per second). 
Actual data analysis shows that the improvement (in terms of 
reduction of bandwidth) was approximately 2.44x. 

 

 
Figure 6: Packet Rate Comparison with NetProxy and Mockets 

 
 

 
Figure 7: Bandwidth Comparison with NetProxy and Mockets 

VII. SUMMARY AND FUTURE WORK 
This paper has described the agile computing middleware 

(ACM) and its application to supporting Service-oriented 
Architectures (SoAs) over tactical and DIL networks. 
NetProxy is the primary component that addresses the 
challenges of enabling legacy applications and SoAs to achieve 
better performance over tactical networks. NetProxy integrates 
the mockets transport protocol that replaces TCP and 
DisService for disruption-tolerant dissemination. Experimental 
results both in the laboratory and the field show the significant 
improvement in performance that can be achieved using this 
middleware capability. All of the components described in this 
paper are available via GPLv3 licensing from GitHub [2]. 

Future work in this area consists of further enhancements to 
SoA capabilities. In particular, the AgServe component is 
being updated to support dynamic service deployment and 
service migration by discovering and exploiting 
communication and computation resources in a dynamic 
tactical / DIL network environment. 
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