
 1

Abstract—Service Oriented Architectures allow for seamless

integration of heterogeneous systems and extensive service reuse;

characteristics that led to a wide adoption of this paradigm in the

enterprise and military environment. While SoAs are currently

deployed in tactical environments mainly at higher-echelon

levels, it is necessary to allow for the exchange of information all

the way down to the edge nodes deployed on the ground and

back. Because most SoAs implementations were designed to work

on reliable infrastructure networks, porting SoAs to the tactical

environment requires a complete redesign of the protocol stack to

support unreliable, transiently disconnected networks. In this

paper, we present our approach to integrate the U.S. Marine

Corps’s Marine Command and Control Systems and

Applications SoA (MC2SA SoA) with DisServicePro, a

middleware that supports proactive dissemination and

information on demand in tactical edge networks.

Index Terms: Service-oriented Architectures, Tactical

Networks, Information Dissemination, Quality of Information.

I. INTRODUCTION

 ERVICE-oriented Architecture (SoA) -based approaches

lead to the development of independent services that are

interoperable and that can be composed to implement complex

distributed applications by defining a workflow. Integration of

heterogeneous services and service reuse are valuable features

that might allow for significant savings in terms of

development time and total cost. These considerations are of

particular relevance in the enterprise environment, which

requires the development of large and robust applications.

Service integration is of particular relevance in the context of

military applications where, as stated in [1], coalition forces,

or different branches of the same force, use different systems

and sharing information across forces/branches is of

paramount importance. Because of the benefits that SoA

architectures entail, their adoption has been recommended for

the development of military applications.

SoAs methodologies have been largely adopted to build

web applications or to connect enterprise applications and

therefore most of the current implementations were developed

to work in the internet, or over enterprise private network, and

therefore rely on protocols that require static and reliable

network topologies. Tactical networks pose entirely new

challenges that did not apply to the context for which SoAs

were proposed. First and foremost, because tactical operations

are highly dynamic, the nodes are interconnected via rapidly

deployable wireless ad-hoc networks. These networks may be

bandwidth constrained and unreliable and may often be

partitioned. Moreover, the set of nodes operating in the

network is highly heterogeneous: they may range from

battery-operated, computationally constrained sensors that

communicate with low-bandwidth, short range, power-

efficient radio links, to rack mounted servers that can

communicate over satellite links.

These challenges call for the design of new ways to support

SoAs in the tactical environment. These new ways should not

rely on the presence of infrastructure nor on the presence of

end-to-end links from the source to the destination(s).

Decentralized and Peer-to-peer (P2P) architectures offer a

viable solution to the problem of the lack of infrastructure. In

P2P architectures nodes are not assigned pre-defined roles and

each of them can provide service to other peers and consume

services from other peers. This approach is more robust and

can allow for partial functioning of the network even in case

of partitioning.

Store-carry-and-forward networks have been proposed to

deal with disconnected networks. The protocol stack on which

tactical SoAs are developed should include protocols that were

designed along these paradigms.

While previous research has focused mainly on the problem

of service discovery, in this paper we focus on the exchange of

information between higher echelon Command and Control

networks and the edge nodes. In particular, we describe our

effort to integrate the existing U.S. Marine Corps’ Marine

Command and Control Systems and Applications SoA

(MC2SA SoA) with the Proactive Dissemination Service

(DisServicePro) P2P middleware to support (a) command and

control information delivery from the a command-center (for

example, a Combat Operations Center or a COC) to the edge

nodes, (b) P2P dissemination of situation awareness and

sensor data among the edge nodes and (c) from the edge nodes

back to the COC. The paper also presents other components

that were necessary to the integration. In particular, the

Extending Service-oriented Architectures to the

Tactical Edge

G. Benincasa
1
, E. Casini

1
, R. Lenzi

1
, A. Morelli

1
, E. Benvegnù

1
, N. Suri

1,2
, K. Boner

3
, S. Watson

3

1
Florida Institute for Human and Machine Cognition, Pensacola, FL USA

2
U.S. Army Research Laboratory, Adelphi, MD USA

3
Space and Naval Warfare Systems Command San Diego, CA USA

S

 2

Mockets communication library that offers efficient point-to-

point communication over unreliable wireless links and the

ACI NetProxy that passively captures the traffic to/from an

application and redirects it to Mockets. The NetProxy allows

the integration of Mockets with legacy applications that

cannot be modified to use Mockets directly. Finally the COC–

SoA Bridge interfaces MC2SA SoA to DisServicePro. It is

worth noting that the integration did not require any change in

the existing MC2SA SoA.

In the following sections we first provide an overview of

current SoA implementations that have been proposed for

tactical networks and a survey of SoA implementations over

P2P systems. Secondly, we provide a system-level overview

of our architecture and a description of its components,

followed by a scenario that has been developed and that

includes a quantitative analysis of the benefits introduced by

DisServicePro. Finally, we then conclude and discuss future

work.

II. RELATED WORK

An exhaustive overview of the challenges in developing SoAs

in tactical networks and their requirements can be found in [1].

For instance, traditional SoA approaches rely on centralized

registries to discover the services that are available and to

locate a node that offers the service, which introduces single

points of failure un the network and poor scalability.

Moreover, many implementations of SoA utilize verbose

messaging systems (usually based on XML or, more recently,

on JSON) that rely on protocols that were designed for wired,

reliable networks.

In [2], the authors highlight that one of the challenges to

support SoA in tactical networks is to “enable users to

exchange information with each other at all operational

levels”. Edge nodes operate in constrained, low-bandwidth,

and disconnected environments; in this context the client-

server paradigm commonly adopted to implement SoAs may

not be well suited. A more promising approach to connect to

edge nodes is implementing SoAs on top of peer-to-peer (P2P)

middleware. Because they do not rely on specific nodes to act

as servers, P2P systems are more robust to network

partitioning and can ensure partial functionality even if the

network is partially disconnected. A study of the requirement

and of the suitability of P2P systems for tactical network

environments can be found in [3]. Approaches that implement

SoAs on top of P2P networks have been proposed in [6-9, 10].

In [7] the authors propose p2pSOA, a P2P SoA middleware to

support pervasive connectivity among personal devices.

However p2pSOA relies on JXTA, which was not designed

for mobile ad-hoc networks. In [8] an approach that uses

distributed hash tables (DHTs) for registering the available

service is presented. An approach that relies on DHTs will be

inefficient at best on a MANET and would probably not work

in case of network partitioning. An approach that does not rely

on DHTs but on on-demand service discovery is presented in

[6]. A comprehensive middleware that integrates software

agents and SoAs is described in [4]. In [4], data is

disseminated using the distributed, p2p implementation of

XMPP described in [5].

Other approaches, like the ones in [9-10] advocate for the

adoption cross-layer architectures. In particular, in [9] they

propose a cross layer approach to integrate the service

discovery with the routing algorithm (OLSR), while in [10],

Facchini et. al. propose an approach were the cross layering

includes the SoA layer. This latter approach allows greater

integration among all the layers, and allows for greater control

over the network. However adopting this approach may

require changes to the SoA APIs, which may not always a

feasible solution.

III. TACTICAL SOA VISION

The architecture depicted in Figure 1 illustrates the possible

Tactical SoA (TSoA) system architecture. The SoI (Service-

oriented Infrastructure) is running at the higher echelons,

along with other services. These components are likely to be

deployed at COCs with enterprise-class intranet works within

the COC and therefore it is reasonable to assume they are

connected through reliable links. At this level, client

applications are directly connected to the SoI and can make

information available to the other components and receive

information from other components by publishing/subscribing

to the SoI. At a lower architecture level, the COC Bridge is in

charge of connecting the SoI to the edge nodes. The COC is

expected to be deployed on the ground and be connected to the

higher echelons, where the SoI is deployed, by means of

point-to-point, unreliable, low-bandwidth links. The COC

Bridge distributes messages from the SoI to the edge nodes

and publishes the messages from the edge nodes to the SoI. In

order to support the distribution of information such as

situational awareness data, or command and control

information, it is critical that the communication protocol

between the COC and the edge nodes supports efficient point-

to-multipoint transmission. The link from the COC to the edge

nodes and between the edge nodes themselves may not always

be available, or in some cases may even never be available,

requiring that the communication between COC and edge

Figure 1

 3

node be performed by mean of mobile nodes (for instance

UAVs) that ferry the messages between the two sides. It is

therefore critical that the system is able to take advantage of

the transient links and that the nodes in the edge network

operate in a store-and-forward fashion. When links to the edge

network are available, it is important to maximize the utility of

the information being transmitted. Therefore, messages should

be prioritized based on their relevance to the users and their

missions. It is also of paramount importance that the edge

nodes are able to share relevant information with each other,

without the auxiliary support of explicitly designated servers

and infrastructure at the COC.

IV. TACTICAL SOA COMPONENTS

In this section, we present the components of our

implementation for tactical SOA.

A. SoI

U.S. Marine Command and Control Systems and Applications

(MC2SA) Service-oriented Architecture (SoA) was developed

with the intent of governing service-oriented interactions

between software elements on a wide range of tactical

systems. These systems include legacy Tactical Data Systems

(TDSs) and newly developed software services specifically

designed to interact with the SoA. The SoA Architecture is

composed of three parts: the Task Service Layer, the Entity

Service Layer and the Utility Service Layer. The Utility

Service layer is the layer that acts as a container for the

Service-Oriented Infrastructure (SoI), one of the key

components of the system architecture of this approach. The

SoI provides the non-business-centric infrastructure that is the

basis for all other services in the architecture of the SoA. The

SoA and the set of services built on the SoI are deployed as

capability modules, each of which consists of one or more

virtual machines (VMs). The advantage of this approach is

that virtualization enables deployment of the software in any

environment that supports a virtual machine solution,

assuming that adequate computing resources are available.

The SoI offers a Publish-Subscribe service that provides the

capability to publish data and subscribe for data based on

specified filter criteria. Published data is structured according

to a specific Information Model that defines an Information

Object type, which represents a specific data format and

associated policy settings. This allows subscribers to filter on

a known set of criteria regardless of data type and content.

Also, the SoI provides a feature called Mediation that allows

the system to perform transformations on Information Object

payloads, which are exchanged via the SoI and/or stored in the

SoI. This provides the functionality for mediation of data

within the SoI like the handling and translation of XML

payloads between Information Object Types. Other services

provided by the SoI are the Information Repository that

handles CRUD (Create, Read, Update and Delete) operations

and the persistence policy configuration of the above

mentioned. At last, the SoI provides also a Tactical Messaging

feature that covers the handling of incoming Variable Message

Format (VMF) and United States Message Text Format

(USMTF) messages, which can be mediated and distributed by

the SoI over disadvantaged networks through DisServicePro,

via the SoA Bridge.

B. DisService

Dissemination Service (DisService) is a P2P publish/subscribe

message-oriented middleware that was designed to perform

efficient disruption-tolerant information dissemination in

wireless tactical environments. Because DisService was

specifically designed for wireless networks, it relies on the

assumption that the cost of a local broadcast is equivalent to

the cost of using unicast to a neighbor. DisService takes

advantage of this assumption by always using local broadcast

(or multicast) to send a message to a neighbor, which allows

other neighbors to opportunistically listen to the

communication that can therefore cache the message. The use

of opportunistic listening increases the availability of the

message and allows the recipients of the message to retrieve

missing messaging or missing fragments of a message, from

neighbors other than the sender. This capability has proven to

significantly increase the reliability of the transmission in

presence of unreliable and asymmetric links [13]. Because

different applications may have different requirements,

DisService supports all the combinations of reliable/unreliable

and sequenced/non-sequenced message delivery. When

reliable delivery is selected, DisService adopts a receiver-

initiated reliability, which integrates well with the

opportunistic listening feature (a node may decide to request a

missing fragment to any peer). Moreover, DisService was

designed to support point-to-multipoint communications and

different peers may have different reliability requirements;

using a receiver-initiated reliability mechanism allows each

application to enforce the reliability model that best matches

its needs.

New messages in DisService can be published in two

different modes: they can be instantly pushed over the

network, or they can be made available for other peers to

retrieve. In the latter case, only a small metadata that describes

the message and advertises its availability is sent over the

network. Receiving peers can decide whether to retrieve the

message or not. This feature is particularly useful when the

message being published is large and should not be sent unless

explicitly requested. When messages are made available, they

can also be divided in chunks that are individually intelligible,

but that may contain either incomplete or lower resolution

information than the original message. A peer may

subsequently request individual chunks until the reassembled

information reaches a level of detail that satisfies the

requirements of the application. This feature may allow for

significant bandwidth savings when it is not necessary to

retrieve a subset of the chunks. Moreover, even when the

whole set of chunks has to be retrieved, partial information

will be available before the complete message is retrieved.

DisService allows the registration of modules to control the

replication and forwarding of messages and management of

the data cache.

C. DisServicePro

The Proactive Dissemination Service (DisServicePro) [14]

extends DisService and introduces new capabilities to support

proactive information dissemination. DisServicePro attempts

 4

to predict what information will be useful and therefore likely

to be requested by a neighbor and pre-stage it to the neighbor

ahead of time when the link is still available. The prediction is

performed by matching the user context of the neighbor

against the metadata of the message.

The user context of the nodes includes information about

the user such as the paths (one current path, and possibly

multiple alternative or backup paths) that the user is expected

to follow, the mission that he or she is performing, his or her

role, etc. Moreover, the user can configure a value of useful

distance, which determines the size of the area around the path

for which the user is interested in receiving information.

The metadata describing the data contains a set of pre-

defined attributes (such as time of creation, location, area of

relevance, target mission, pedigree, etc.) but can be

customized to match the needs of the application.

The matching is based upon a set of policies that take into

account the spatial and temporal relevance of the message for

the user (by matching the area of relevance of the metadata

against the user’s paths), the role of the user and the mission it

is assigned, the expiration time of the message and the

importance that the message was assigned by the user

generating the message. Moreover, the prediction can be

augmented by also taking into account the personal

preferences of the user. These preferences are learned by the

history of the previous messages that the user requested. The

metadata of the messages that are considered useful for a node

are then scheduled for transmission ordered by the utility value

that the prediction algorithm assigned them. Upon receipt of

metadata, a node can decide whether to retrieve the

corresponding message.

Finally, in order to limit the transmission of information

with limited predicted utility, nodes can set a utility threshold

under which messages are not pre-staged, even if predicted to

be of relevance for the user.

D. SoA Bridge

The SoA Bridge is a key component within this scenario that

interconnects the two different architectural approaches

(enterprise and tactical). It allows the reliable connection and

communication between the SoA represented by the MC2SA

SoI (described in the next paragraph) and the P2P message-

oriented middleware DisServicePro, with the goal of enabling

tactical information from the above mentioned SOA

environment to be disseminated directly to the edge nodes

using the P2P features offered by DisServicePro.

In order to achieve its goals within the SoA environment,

the SoA Bridge has been designed and implemented over the

MC2SA SoI’s SDK (Software Development Kit) to take

advantage of the Advanced Message Queuing Protocol

(AMQP) messaging bus and publish-and-subscribe model.

The primary task of the SoA Bridge is in fact to subscribe to a

specific set of AMQP topics defined at the SoI level and

receive strategic information from different information

sources and clients connected to the SoI. All information

published by clients within this scenario (e.g. Joint Tactical

Common Operating Picture Workstation, or JTCW) is

translated into a SoI native message format. This allows the

correct parsing and validation of the exchanged messages

between the nodes and the SoI.

Furthermore, the SoA Bridge supports the capability of

filtering and forwarding messages generated by any of the

edge nodes all the way back to the SoI. These messages are

then ready to be eventually consumed by any client that

supports either a one-way or two-way communication (e.g., a

publish-and-subscribe mechanism) to the SoI, generally

through the AMQP protocol.

E. Mockets and NetProxy

Traditional communication protocols such as TCP and UDP

were not designed for tactical networks. TCP identifies packet

loss as congestion thus reducing the sending rate and cannot

distinguish between a lost packet and a late acknowledgment

typical of high-latency links. UDP does not suffer from these

issues but in many situations we need to be able to transmit

packets reliably. For these reasons while putting in place the

described architecture we decided to leverage on Mockets for

the communication.

Mockets is a communication library specifically designed to

provide high performance in mobile ad-hoc networks [15].

Mockets is a flexible communication protocol that runs over

UDP and offers an end-to-end connection capable of several

delivery services: messages can be sent reliably or unreliably

and in a sequenced or non-sequenced fashion. One of the main

components of Mockets, the Network Condition Monitor [16],

collects end-to-end network statistics on the state of the

communication link such as peer reachability, bandwidth and

latency. By leveraging on the information collected, Mockets

can adjust its internal parameters to maximize throughput and

minimize latency, thus increasing the liveliness of data in

various deploying environments.

The NetProxy allows the integration of Mockets with legacy

systems using TCP or UDP. The NetProxy transparently

captures the outgoing TCP or UDP traffic on configurable

ports and redirects it to Mockets. The NetProxy can also be

configured to perform traffic shaping and prioritization.

F. AMQP

The Advanced Message Queuing Protocol (AMQP) [11] is an

application layer protocol for message-oriented middleware

designed with an open standard specification. AMQP offers

key features for our approach like point-to-point and publish-

and-subscribe message routing and queuing. AMQP allows

the design and implementation of messaging architectures

using a clear set of message patterns with a secure and easy to

deploy model. In fact, the primary model used in this scenario

is a publish-and-subscribe mechanism that allows the

distribution of information to a set of recipients according to

specific subscription criteria. This particular queuing model

has provided the whole set of features needed by our

implementation.

G. JTCW

Joint Tactical Common Operating Picture (COP) Workstation

(JTCW) Client and Gateway (C&GW) is a client application

that provides features like the display of tactical track data

from a Tactical Database Manager (TDBM) data server and a

full cartographic and track API support.

JTCW offers a modular architecture and supports a variety

of digital map data, a full overlay editor with export/import

 5

capabilities. Furthermore, JTCW supports the MIL-STD-

2525B standard and Naval Tactical Data System (NTDS)

symbology for track display and overlays, which was

particularly useful in our context.

JTCW uses a C2PC Client Data Connector that provides an

interface between the SoI and C2PC clients that allows JTCW

to exchange tactical data with our SoA. This also allows for

data to be shared with C2PC clients that do not currently have

access to. Since the C2PC Client Data Connector interfaces

with JTCW, it allows fine-grained control for users to be able

to subscribe for data from the SoI and work with it locally.

The C2PC Client Data Connector makes extensive use of

AMQP to deliver messages and tactical data.

V. IMPLEMENTATION DETAILS

There are three major components involved in realizing the

goal of extending enterprise-level SoAs running on higher-

echelon nodes to connect with tactical dismounted users, and

they are depicted in Figure 2. The first component is the SoA

Bridge, which interconnects the MC2SA SoI with

DisServicePro. One of the challenges was being able to

efficiently fetch and translate messages coming from clients

connected to the SoI (e.g. JTCW) in a format that is easy to

process and efficient to transmit and disseminate to tactical

edge nodes by DisServicePro. As a prerequisite, all the clients

that want to exchange data with the SoI need to use the SoI

native XML format, which follows the XML 1.0

Specification produced by the World Wide Web Consortium

(W3C).

When a client, like JTCW, sends tactical data (through

AMQP) to the SoI, the message is forwarded by the AMQP

daemon (running on the SoI) to the SoA Bridge via its

subscriber component. The SoA Bridge was developed in

accordance with the MC2SA SoA Software Development Kit

(SDK). The SoA Bridge connects to the SoI via a secure TLS

(Transport Layer Security) connection.

Once the SoA Bridge has been authenticated, it subscribes

to information that might be published in the SoI. Currently,

this consists primarily of tracks. As new track information is

published, or tracks are updated, the information is pushed to

the SoA Bridge, which subsequently transforms the

information into an intermediate format (called the SoI-

DisServicePro exchange format).

In this particular implementation, JTCW and the MC2SA

SoI were deployed in the same Local Area Network (LAN),

while the SoI Bridge connects to the MC2SA SoI over a Wide

Area Network (WAN) and it is performed over mockets, by

transparently redirecting the AMQP’s TCP traffic via the

NetProxy. While this is a possible configuration, there may be

cases where applications (such as JTCW) and MC2SA SoI

may not be deployed in the same LAN, and they may connect

over WAN instead. In these cases, it would be possible to use

the NetProxy to also redirect the application- MC2SA SoI

traffic over mockets.

The SoI-DisServicePro exchange format message is

completely transparent at the DisServicePro level (it is data

that must be replicated following the specified policies) but

can be instead processed, transformed and possibly dropped

by the SoA Bridge and the applications running on the edge

nodes. The correct processing of the SoI- DisServicePro

exchange messages is important in order to keep track of the

message at the application level and to filter the above-

mentioned messages based on the needs of the application.

This leads to the implementation of a concrete solution for

handling different types of tactical data messages sent by

clients like JTCW. As described above, generate and submit

tactical data (e.g. Tracks) to the SoI by pushing SoI native

XML messages to the AMQP daemon that handles

subscriptions from other clients and routes the information to

them. While this model is adequate for clients operating at

upper echelons, it does not scale down to the tactical edge,

where bandwidth and connectivity is severely limited. This

adaptation is performed by the second component,

DisServicePro, which selects only the set of tracks that are

relevant to each dismounted user and pushes that subset to the

edge node.

The third component is the end-user application that

receives information from DisServicePro and displays it to

dismounted users. DisServicePro has been successfully

integrated with the ISPA SUDA (Small Unit Decision Aid)

application for Android™, which offers a map-oriented

display of geographically relevant data on a mobile device.

The DisServicePro and SoA Bridge components are two-

way, in the sense that they can also handle information being

generated at the edge by the SUDA application and

disseminate the information appropriately. The information is

disseminated in a decentralized manner to other edge nodes, as

well as being made available at higher echelons via the SoI.

The published data can then be received by any connected

subscriber (with the related topic) or pushed by the SoI Web

Services to external applications. This functionality was

Figure 2

 6

successfully tested with Google Earth™ and NASA World

Wind.

VI. EXPERIMENTATION SCENARIO

Blue Force Tracking (BFT) is a tactical application that

provides the allied force with situational awareness data of

their positions and is critical to avoid friendly fire accidents. It

is therefore necessary to disseminate BFT information over

the network in a timely fashion. However BFT information

has limited spatial relevance: nodes that are far apart that

cannot interact do not need to know about their respective

positions and hence may not need to share BFT information

among each other. Thus, bandwidth can be saved to transmit

more relevant information. On the other hand, nodes at higher

echelons may want to have a global view of the position of the

forces and may need to receive BFT from each node in the

network. DisServicePro can support both cases by configuring

the appropriate values for utility based on distance and the

proper coordinates that describe the area of relevance for the

BFT message. For example, the COC may set up a value for

the useful distance that contains the whole area where the

operation is taking place, while an edge node may want to

limit the reception of BFT messages only to the nodes that are

in a few-mile-range from it. Each time two nodes encounter,

they both will match the metadata they have in their own local

caches against each other's node contexts and matching

metadata is exchanged. Because the nodes operate in a store-

carry-and-forward fashion, the BFT message may either reach

the COC directly, or through a harvester node, and therefore

the BTF information can reach the SoI and its subscribers.

VII. EXPERIMENTATION RESULTS

While extensive testing of the system and its capabilities

have been performed, in this section we try to give a sense of

the benefits provided by the filtering capabilities of

DisServicePro (that is, the ability of DisServicePro to pre-

stage relevant information to neighboring nodes). For this

reason, we designed a simple experiment that tries to

reproduce a real world scenario in which a node follows a

track of six waypoints and with total length of approximately

2.5 KM, and, as it moves along the path, it receives data that

were generated by sensors located in the area surrounding the

path.

The sensors are within an area of 4 KM by 3 KM, which

also contains the whole path of the node. Moreover, for

additional realism, the sensors are not uniformly distributed

over the whole area; instead they are clustered around several

strategic locations. For repeatability, we assume that the

sensor data is generated prior the deployment of the moving

node; therefore, instead of simulating each sensor node, we

simulate a single node (that we assume to be the COC) that is

pre-load with all the messages that were generated by the

sensors (1000 messages). In reality, these messages would

originate dynamically from deployed sensors. In order to

evaluate the effectiveness of the filtering, we run the

experiment configuring the mobile node with different values

of useful distance (described in Section IV, paragraph C),

while the utility threshold is set to 60% of the maximum value

of utility.

The results are reported in Table I, and show that the

filtering capabilities of DisServicePro effectively reduce the

number of messages that are sent to the node. The filtering has

the twofold benefit to limit the amount of data that is

transmitted over the network, and to limit the operator

overload: the user will not be distracted by the arrival of new,

irrelevant data.

VIII. CONCLUSION

In the paper we presented our approach to extend SoAs to

the tactical environment. One of our objectives was to allow

full compatibility with the U.S. Marine Corps’ MC2SA SoA,

without requiring any modification to the MC2SA systems.

The objective was achieved by implementing an intermediate

component, the SoA Bridge that allows both the SoA and the

P2P subsystems to exchange tactical data while at the same

time achieving connection reliability on constrained links and

consistency of the information on the edge nodes. This

approach allows the two subsystems to dynamically change

their behavior, based on the requests and the tactical data that

they are receiving from each other at runtime, while adhering

to configured policies that might be in place.

Tests and experiments to evaluate the reliability of this

architectural solution were conducted using the NOMADS

Tactical Network Emulation Testbed (which utilizes a

modified version of the Mobile Ad-hoc Network Emulator

(MANE) [17]). The results show the benefits of DSPro, the

SoI Bridge, Mockets, and NetProxy. In particular, the benefits

of DSPro to downselect the number of tactically relevant

messages for each edge user significantly reduces the

bandwidth utilized and the number of irrelevant messages

presented to the user.

ACKNOWLEDGMENT

This work is supported by the Office of Naval Research

under grant N00014-09-1-0012 and the U.S. Army Research

Laboratory under cooperative agreement W911NF-11-2-0095.

REFERENCES

[1] Suri, N. (2009). Dynamic service-oriented architectures for tactical edge
networks. Proceedings of the 4th Workshop on Emerging Web Services

Technology - WEWST ’09 (pp. 3-10). New York, New York, USA:

ACM Press.
[2] Lund, K., Eggen, A., Hadzic, D., Hafsoe, T., & Johnsen, F. (2007).

Using web services to realize service oriented architecture in military

communication networks. IEEE Communications Magazine, 45(10), 47-
53.

[3] Suri, N., Benincasa, G., Tortonesi, M., Stefanelli, C., Kovach, J.,

Winkler, R., Kohler, U. S., et al. (2010). Peer-to-peer communications
for tactical environments: Observations, requirements, and experiences.

IEEE Communications Magazine, 48(10), 60-69.

Table I

Useful

Distance
(Meters)

Number of

Messages

Perc. of

Pre-Staged
Messages

100 56 0.06%

1000 161 0.16%
10000 209 0.21%

 7

[4] Mayk, I., Regli, W., Nguyen, D., Mai, M., Chan, A., Urness, T., Goren,

B., et al. (2011). Net-centric information and knowledge management
and dissemination for data-to-decision C2 applications using intelligent

agents and service-oriented architectures. 2011 - MILCOM 2011

Military Communications Conference, 1568-1573.
[5] Robert, N. L., Macker, J., Millar, D., William, C. R., & Taylor, I.

(2010). XO: XMPP overlay service for distributed chat. 2010 -

MILCOM 2010 Military Communications Conference, 1116-1121.
[6] Suri, N., Marcon, M., Quitadamo, R., Rebeschini, M., Arguedas, M.,

Stabellini, S., Tortonesi, M., et al. (2008). An Adaptive and Efficient

Peer-to-Peer Service-Oriented Architecture for MANET Environments
with Agile Computing. NOMS Workshops 2008 - IEEE Network

Operations and Management Symposium Workshops, 364-371.

[7] Galatopoullos, D. G., Kalofonos, D. N., & Manolakos, E. S. (2008). A
P2P SOA enabling group collaboration through service composition.

Proceedings of the 5th international conference on Pervasive services -

ICPS (p. 111). New York, New York, USA: ACM Press.
[8] Sacha, J., Biskupski, B., Dahlem, D. Cunningham, R., Meier, R.,

Dowling, J., and Haahr, M. Decentralising a service- oriented

architecture. In Journal of Peer-to-Peer Networking and Applications,
October 8, 2009.

[9] Halonen, T., & Ojala, T. (2006). Cross-layer design for providing

service oriented architecture in a mobile Ad Hoc network. Proceedings
of the 4th international conference on Mobile and ubiquitous

multimedia- New York, New York, USA: ACM Press.

[10] Facchini, C., Granelli, F., & Da Fonseca, N. L. S. (2010). Cognitive
service-oriented infrastructures. Journal of Internet, 4(1), 269-278.

[11] Vinoski, S. (2006). Advanced Message Queuing Protocol. IEEE Internet
Computing, 10(6), 87-89.

[12] Lin, B., Ioup, E., & Sample, J. (2010). The NRL Geospatial Hub for

ocean sensor processing and collaboration. OCEANS 2010 MTS/IEEE
SEATTLE (pp. 1-5). IEEE.

[13] Benincasa, G., Rossi, A., Suri, N., Tortonesi, M., & Stefanelli, C.

(2011). An Experimental Evaluation of Peer-To-Peer Reliable Multicast
Protocols. 2011 - MILCOM 2011 MILITARY COMMUNICATIONS

CONFERENCE (pp. 1015-1022). Baltimore, MD.

[14] Rota, S., Benincasa, G., Interlandi, M., Suri, N., Bonnlander, B.,
Bradshaw, J., Tortonesi, M., et al. (2010). Supporting information on

demand with the DisServicePro Proactive peer-to-peer information

dissemination system. 2010 - MILCOM 2010 MILITARY
COMMUNICATIONS CONFERENCE (pp. 561-568). San Jose, CA.

[15] Suri, N., Tortonesi, M., Arguedas, M., Breedy, M., Carvalho, M., &

Winkler, R. (2005). Mockets: A Comprehensive Application-level
Communications Library. 2005 - MILCOM 2005 MILITARY

COMMUNICATIONS CONFERENCE. Atlantic City, NJ.

[16] Stefanelli, C., Tortonesi, M., Carvalho, M. Suri, N. (2007). Network
Conditions Monitoring in the Mockets Communications Framework.

2007- MILCOM 2007 MILITARY COMMUNICATIONS

CONFERENCE. Orlando, FL.
[17] N. Ivanic, B. Rivera, B. Adamson, “Mobile Ad Hoc Network Emulation

Environment”, in Proceedings of 2009 IEEE Military Communications

Conference (MILCOM 2009).

